/* zeta.c * * Riemann zeta function of two arguments * * * * SYNOPSIS: * * double x, q, y, zeta(); * * y = zeta( x, q ); * * * * DESCRIPTION: * * * * inf. * - -x * zeta(x,q) = > (k+q) * - * k=0 * * where x > 1 and q is not a negative integer or zero. * The Euler-Maclaurin summation formula is used to obtain * the expansion * * n * - -x * zeta(x,q) = > (k+q) * - * k=1 * * 1-x inf. B x(x+1)...(x+2j) * (n+q) 1 - 2j * + --------- - ------- + > -------------------- * x-1 x - x+2j+1 * 2(n+q) j=1 (2j)! (n+q) * * where the B2j are Bernoulli numbers. Note that (see zetac.c) * zeta(x,1) = zetac(x) + 1. * * * * ACCURACY: * * * * REFERENCE: * * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, * Series, and Products, p. 1073; Academic Press, 1980. * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier */ #include #ifdef ANSIPROT extern double fabs ( double ); extern double pow ( double, double ); extern double floor ( double ); #else double fabs(), pow(), floor(); #endif extern double MAXNUM, MACHEP; /* Expansion coefficients * for Euler-Maclaurin summation formula * (2k)! / B2k * where B2k are Bernoulli numbers */ static double A[] = { 12.0, -720.0, 30240.0, -1209600.0, 47900160.0, -1.8924375803183791606e9, /*1.307674368e12/691*/ 7.47242496e10, -2.950130727918164224e12, /*1.067062284288e16/3617*/ 1.1646782814350067249e14, /*5.109094217170944e18/43867*/ -4.5979787224074726105e15, /*8.028576626982912e20/174611*/ 1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/ -7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/ }; /* 30 Nov 86 -- error in third coefficient fixed */ double zeta(x,q) double x,q; { int i; double a, b, k, s, t, w; if( x == 1.0 ) goto retinf; if( x < 1.0 ) { domerr: mtherr( "zeta", DOMAIN ); return(0.0); } if( q <= 0.0 ) { if(q == floor(q)) { mtherr( "zeta", SING ); retinf: return( MAXNUM ); } if( x != floor(x) ) goto domerr; /* because q^-x not defined */ } /* Euler-Maclaurin summation formula */ /* if( x < 25.0 ) */ { /* Permit negative q but continue sum until n+q > +9 . * This case should be handled by a reflection formula. * If q<0 and x is an integer, there is a relation to * the polygamma function. */ s = pow( q, -x ); a = q; i = 0; b = 0.0; while( (i < 9) || (a <= 9.0) ) { i += 1; a += 1.0; b = pow( a, -x ); s += b; if( fabs(b/s) < MACHEP ) goto done; } w = a; s += b*w/(x-1.0); s -= 0.5 * b; a = 1.0; k = 0.0; for( i=0; i<12; i++ ) { a *= x + k; b /= w; t = a*b/A[i]; s = s + t; t = fabs(t/s); if( t < MACHEP ) goto done; k += 1.0; a *= x + k; b /= w; k += 1.0; } done: return(s); } /* Basic sum of inverse powers */ /* pseres: s = pow( q, -x ); a = q; do { a += 2.0; b = pow( a, -x ); s += b; } while( b/s > MACHEP ); b = pow( 2.0, -x ); s = (s + b)/(1.0-b); return(s); */ }