/* yn.c * * Bessel function of second kind of integer order * * * * SYNOPSIS: * * double x, y, yn(); * int n; * * y = yn( n, x ); * * * * DESCRIPTION: * * Returns Bessel function of order n, where n is a * (possibly negative) integer. * * The function is evaluated by forward recurrence on * n, starting with values computed by the routines * y0() and y1(). * * If n = 0 or 1 the routine for y0 or y1 is called * directly. * * * * ACCURACY: * * * Absolute error, except relative * when y > 1: * arithmetic domain # trials peak rms * DEC 0, 30 2200 2.9e-16 5.3e-17 * IEEE 0, 30 30000 3.4e-15 4.3e-16 * * * ERROR MESSAGES: * * message condition value returned * yn singularity x = 0 MAXNUM * yn overflow MAXNUM * * Spot checked against tables for x, n between 0 and 100. * */ /* Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier */ #include <math.h> #ifdef ANSIPROT extern double y0 ( double ); extern double y1 ( double ); extern double log ( double ); #else double y0(), y1(), log(); #endif extern double MAXNUM, MAXLOG; double yn( n, x ) int n; double x; { double an, anm1, anm2, r; int k, sign; if( n < 0 ) { n = -n; if( (n & 1) == 0 ) /* -1**n */ sign = 1; else sign = -1; } else sign = 1; if( n == 0 ) return( sign * y0(x) ); if( n == 1 ) return( sign * y1(x) ); /* test for overflow */ if( x <= 0.0 ) { mtherr( "yn", SING ); return( -MAXNUM ); } /* forward recurrence on n */ anm2 = y0(x); anm1 = y1(x); k = 1; r = 2 * k; do { an = r * anm1 / x - anm2; anm2 = anm1; anm1 = an; r += 2.0; ++k; } while( k < n ); return( sign * an ); }