/* sincos.c * * Circular sine and cosine of argument in degrees * Table lookup and interpolation algorithm * * * * SYNOPSIS: * * double x, sine, cosine, flg, sincos(); * * sincos( x, &sine, &cosine, flg ); * * * * DESCRIPTION: * * Returns both the sine and the cosine of the argument x. * Several different compile time options and minimax * approximations are supplied to permit tailoring the * tradeoff between computation speed and accuracy. * * Since range reduction is time consuming, the reduction * of x modulo 360 degrees is also made optional. * * sin(i) is internally tabulated for 0 <= i <= 90 degrees. * Approximation polynomials, ranging from linear interpolation * to cubics in (x-i)**2, compute the sine and cosine * of the residual x-i which is between -0.5 and +0.5 degree. * In the case of the high accuracy options, the residual * and the tabulated values are combined using the trigonometry * formulas for sin(A+B) and cos(A+B). * * Compile time options are supplied for 5, 11, or 17 decimal * relative accuracy (ACC5, ACC11, ACC17 respectively). * A subroutine flag argument "flg" chooses betwen this * accuracy and table lookup only (peak absolute error * = 0.0087). * * If the argument flg = 1, then the tabulated value is * returned for the nearest whole number of degrees. The * approximation polynomials are not computed. At * x = 0.5 deg, the absolute error is then sin(0.5) = 0.0087. * * An intermediate speed and precision can be obtained using * the compile time option LINTERP and flg = 1. This yields * a linear interpolation using a slope estimated from the sine * or cosine at the nearest integer argument. The peak absolute * error with this option is 3.8e-5. Relative error at small * angles is about 1e-5. * * If flg = 0, then the approximation polynomials are computed * and applied. * * * * SPEED: * * Relative speed comparisons follow for 6MHz IBM AT clone * and Microsoft C version 4.0. These figures include * software overhead of do loop and function calls. * Since system hardware and software vary widely, the * numbers should be taken as representative only. * * flg=0 flg=0 flg=1 flg=1 * ACC11 ACC5 LINTERP Lookup only * In-line 8087 (/FPi) * sin(), cos() 1.0 1.0 1.0 1.0 * * In-line 8087 (/FPi) * sincos() 1.1 1.4 1.9 3.0 * * Software (/FPa) * sin(), cos() 0.19 0.19 0.19 0.19 * * Software (/FPa) * sincos() 0.39 0.50 0.73 1.7 * * * * ACCURACY: * * The accurate approximations are designed with a relative error * criterion. The absolute error is greatest at x = 0.5 degree. * It decreases from a local maximum at i+0.5 degrees to full * machine precision at each integer i degrees. With the * ACC5 option, the relative error of 6.3e-6 is equivalent to * an absolute angular error of 0.01 arc second in the argument * at x = i+0.5 degrees. For small angles < 0.5 deg, the ACC5 * accuracy is 6.3e-6 (.00063%) of reading; i.e., the absolute * error decreases in proportion to the argument. This is true * for both the sine and cosine approximations, since the latter * is for the function 1 - cos(x). * * If absolute error is of most concern, use the compile time * option ABSERR to obtain an absolute error of 2.7e-8 for ACC5 * precision. This is about half the absolute error of the * relative precision option. In this case the relative error * for small angles will increase to 9.5e-6 -- a reasonable * tradeoff. */ #include <math.h> /* Define one of the following to be 1: */ #define ACC5 1 #define ACC11 0 #define ACC17 0 /* Option for linear interpolation when flg = 1 */ #define LINTERP 1 /* Option for absolute error criterion */ #define ABSERR 1 /* Option to include modulo 360 function: */ #define MOD360 0 /* Cephes Math Library Release 2.1 Copyright 1987 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ /* Table of sin(i degrees) * for 0 <= i <= 90 */ static double sintbl[92] = { 0.00000000000000000000E0, 1.74524064372835128194E-2, 3.48994967025009716460E-2, 5.23359562429438327221E-2, 6.97564737441253007760E-2, 8.71557427476581735581E-2, 1.04528463267653471400E-1, 1.21869343405147481113E-1, 1.39173100960065444112E-1, 1.56434465040230869010E-1, 1.73648177666930348852E-1, 1.90808995376544812405E-1, 2.07911690817759337102E-1, 2.24951054343864998051E-1, 2.41921895599667722560E-1, 2.58819045102520762349E-1, 2.75637355816999185650E-1, 2.92371704722736728097E-1, 3.09016994374947424102E-1, 3.25568154457156668714E-1, 3.42020143325668733044E-1, 3.58367949545300273484E-1, 3.74606593415912035415E-1, 3.90731128489273755062E-1, 4.06736643075800207754E-1, 4.22618261740699436187E-1, 4.38371146789077417453E-1, 4.53990499739546791560E-1, 4.69471562785890775959E-1, 4.84809620246337029075E-1, 5.00000000000000000000E-1, 5.15038074910054210082E-1, 5.29919264233204954047E-1, 5.44639035015027082224E-1, 5.59192903470746830160E-1, 5.73576436351046096108E-1, 5.87785252292473129169E-1, 6.01815023152048279918E-1, 6.15661475325658279669E-1, 6.29320391049837452706E-1, 6.42787609686539326323E-1, 6.56059028990507284782E-1, 6.69130606358858213826E-1, 6.81998360062498500442E-1, 6.94658370458997286656E-1, 7.07106781186547524401E-1, 7.19339800338651139356E-1, 7.31353701619170483288E-1, 7.43144825477394235015E-1, 7.54709580222771997943E-1, 7.66044443118978035202E-1, 7.77145961456970879980E-1, 7.88010753606721956694E-1, 7.98635510047292846284E-1, 8.09016994374947424102E-1, 8.19152044288991789684E-1, 8.29037572555041692006E-1, 8.38670567945424029638E-1, 8.48048096156425970386E-1, 8.57167300702112287465E-1, 8.66025403784438646764E-1, 8.74619707139395800285E-1, 8.82947592858926942032E-1, 8.91006524188367862360E-1, 8.98794046299166992782E-1, 9.06307787036649963243E-1, 9.13545457642600895502E-1, 9.20504853452440327397E-1, 9.27183854566787400806E-1, 9.33580426497201748990E-1, 9.39692620785908384054E-1, 9.45518575599316810348E-1, 9.51056516295153572116E-1, 9.56304755963035481339E-1, 9.61261695938318861916E-1, 9.65925826289068286750E-1, 9.70295726275996472306E-1, 9.74370064785235228540E-1, 9.78147600733805637929E-1, 9.81627183447663953497E-1, 9.84807753012208059367E-1, 9.87688340595137726190E-1, 9.90268068741570315084E-1, 9.92546151641322034980E-1, 9.94521895368273336923E-1, 9.96194698091745532295E-1, 9.97564050259824247613E-1, 9.98629534754573873784E-1, 9.99390827019095730006E-1, 9.99847695156391239157E-1, 1.00000000000000000000E0, 9.99847695156391239157E-1, }; #ifdef ANSIPROT double floor ( double ); #else double floor(); #endif int sincos(x, s, c, flg) double x; double *s, *c; int flg; { int ix, ssign, csign, xsign; double y, z, sx, sz, cx, cz; /* Make argument nonnegative. */ xsign = 1; if( x < 0.0 ) { xsign = -1; x = -x; } #if MOD360 x = x - 360.0 * floor( x/360.0 ); #endif /* Find nearest integer to x. * Note there should be a domain error test here, * but this is omitted to gain speed. */ ix = x + 0.5; z = x - ix; /* the residual */ /* Look up the sine and cosine of the integer. */ if( ix <= 180 ) { ssign = 1; csign = 1; } else { ssign = -1; csign = -1; ix -= 180; } if( ix > 90 ) { csign = -csign; ix = 180 - ix; } sx = sintbl[ix]; if( ssign < 0 ) sx = -sx; cx = sintbl[ 90-ix ]; if( csign < 0 ) cx = -cx; /* If the flag argument is set, then just return * the tabulated values for arg to the nearest whole degree. */ if( flg ) { #if LINTERP y = sx + 1.74531263774940077459e-2 * z * cx; cx -= 1.74531263774940077459e-2 * z * sx; sx = y; #endif if( xsign < 0 ) sx = -sx; *s = sx; /* sine */ *c = cx; /* cosine */ return 0; } if( ssign < 0 ) sx = -sx; if( csign < 0 ) cx = -cx; /* Find sine and cosine * of the residual angle between -0.5 and +0.5 degree. */ #if ACC5 #if ABSERR /* absolute error = 2.769e-8: */ sz = 1.74531263774940077459e-2 * z; /* absolute error = 4.146e-11: */ cz = 1.0 - 1.52307909153324666207e-4 * z * z; #else /* relative error = 6.346e-6: */ sz = 1.74531817576426662296e-2 * z; /* relative error = 3.173e-6: */ cz = 1.0 - 1.52308226602566149927e-4 * z * z; #endif #else y = z * z; #endif #if ACC11 sz = ( -8.86092781698004819918e-7 * y + 1.74532925198378577601e-2 ) * z; cz = 1.0 - ( -3.86631403698859047896e-9 * y + 1.52308709893047593702e-4 ) * y; #endif #if ACC17 sz = (( 1.34959795251974073996e-11 * y - 8.86096155697856783296e-7 ) * y + 1.74532925199432957214e-2 ) * z; cz = 1.0 - (( 3.92582397764340914444e-14 * y - 3.86632385155548605680e-9 ) * y + 1.52308709893354299569e-4 ) * y; #endif /* Combine the tabulated part and the calculated part * by trigonometry. */ y = sx * cz + cx * sz; if( xsign < 0 ) y = - y; *s = y; /* sine */ *c = cx * cz - sx * sz; /* cosine */ return 0; }