/* Arithmetic operations on polynomials with rational coefficients * * In the following descriptions a, b, c are polynomials of degree * na, nb, nc respectively. The degree of a polynomial cannot * exceed a run-time value MAXPOL. An operation that attempts * to use or generate a polynomial of higher degree may produce a * result that suffers truncation at degree MAXPOL. The value of * MAXPOL is set by calling the function * * polini( maxpol ); * * where maxpol is the desired maximum degree. This must be * done prior to calling any of the other functions in this module. * Memory for internal temporary polynomial storage is allocated * by polini(). * * Each polynomial is represented by an array containing its * coefficients, together with a separately declared integer equal * to the degree of the polynomial. The coefficients appear in * ascending order; that is, * * 2 na * a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x . * * * * `a', `b', `c' are arrays of fracts. * poleva( a, na, &x, &sum ); Evaluate polynomial a(t) at t = x. * polprt( a, na, D ); Print the coefficients of a to D digits. * polclr( a, na ); Set a identically equal to zero, up to a[na]. * polmov( a, na, b ); Set b = a. * poladd( a, na, b, nb, c ); c = b + a, nc = max(na,nb) * polsub( a, na, b, nb, c ); c = b - a, nc = max(na,nb) * polmul( a, na, b, nb, c ); c = b * a, nc = na+nb * * * Division: * * i = poldiv( a, na, b, nb, c ); c = b / a, nc = MAXPOL * * returns i = the degree of the first nonzero coefficient of a. * The computed quotient c must be divided by x^i. An error message * is printed if a is identically zero. * * * Change of variables: * If a and b are polynomials, and t = a(x), then * c(t) = b(a(x)) * is a polynomial found by substituting a(x) for t. The * subroutine call for this is * * polsbt( a, na, b, nb, c ); * * * Notes: * poldiv() is an integer routine; poleva() is double. * Any of the arguments a, b, c may refer to the same array. * */ #include <stdio.h> #include <math.h> #ifndef NULL #define NULL 0 #endif typedef struct{ double n; double d; }fract; #ifdef ANSIPROT extern void radd ( fract *, fract *, fract * ); extern void rsub ( fract *, fract *, fract * ); extern void rmul ( fract *, fract *, fract * ); extern void rdiv ( fract *, fract *, fract * ); void polmov ( fract *, int, fract * ); void polmul ( fract *, int, fract *, int, fract * ); int poldiv ( fract *, int, fract *, int, fract * ); void * malloc ( long ); void free ( void * ); #else void radd(), rsub(), rmul(), rdiv(); void polmov(), polmul(); int poldiv(); void * malloc(); void free (); #endif /* near pointer version of malloc() */ /* #define malloc _nmalloc #define free _nfree */ /* Pointers to internal arrays. Note poldiv() allocates * and deallocates some temporary arrays every time it is called. */ static fract *pt1 = 0; static fract *pt2 = 0; static fract *pt3 = 0; /* Maximum degree of polynomial. */ int MAXPOL = 0; extern int MAXPOL; /* Number of bytes (chars) in maximum size polynomial. */ static int psize = 0; /* Initialize max degree of polynomials * and allocate temporary storage. */ void polini( maxdeg ) int maxdeg; { MAXPOL = maxdeg; psize = (maxdeg + 1) * sizeof(fract); /* Release previously allocated memory, if any. */ if( pt3 ) free(pt3); if( pt2 ) free(pt2); if( pt1 ) free(pt1); /* Allocate new arrays */ pt1 = (fract * )malloc(psize); /* used by polsbt */ pt2 = (fract * )malloc(psize); /* used by polsbt */ pt3 = (fract * )malloc(psize); /* used by polmul */ /* Report if failure */ if( (pt1 == NULL) || (pt2 == NULL) || (pt3 == NULL) ) { mtherr( "polini", ERANGE ); exit(1); } } /* Print the coefficients of a, with d decimal precision. */ static char *form = "abcdefghijk"; void polprt( a, na, d ) fract a[]; int na, d; { int i, j, d1; char *p; /* Create format descriptor string for the printout. * Do this partly by hand, since sprintf() may be too * bug-ridden to accomplish this feat by itself. */ p = form; *p++ = '%'; d1 = d + 8; sprintf( p, "%d ", d1 ); p += 1; if( d1 >= 10 ) p += 1; *p++ = '.'; sprintf( p, "%d ", d ); p += 1; if( d >= 10 ) p += 1; *p++ = 'e'; *p++ = ' '; *p++ = '\0'; /* Now do the printing. */ d1 += 1; j = 0; for( i=0; i<=na; i++ ) { /* Detect end of available line */ j += d1; if( j >= 78 ) { printf( "\n" ); j = d1; } printf( form, a[i].n ); j += d1; if( j >= 78 ) { printf( "\n" ); j = d1; } printf( form, a[i].d ); } printf( "\n" ); } /* Set a = 0. */ void polclr( a, n ) fract a[]; int n; { int i; if( n > MAXPOL ) n = MAXPOL; for( i=0; i<=n; i++ ) { a[i].n = 0.0; a[i].d = 1.0; } } /* Set b = a. */ void polmov( a, na, b ) fract a[], b[]; int na; { int i; if( na > MAXPOL ) na = MAXPOL; for( i=0; i<= na; i++ ) { b[i].n = a[i].n; b[i].d = a[i].d; } } /* c = b * a. */ void polmul( a, na, b, nb, c ) fract a[], b[], c[]; int na, nb; { int i, j, k, nc; fract temp; fract *p; nc = na + nb; polclr( pt3, MAXPOL ); p = &a[0]; for( i=0; i<=na; i++ ) { for( j=0; j<=nb; j++ ) { k = i + j; if( k > MAXPOL ) break; rmul( p, &b[j], &temp ); /*pt3[k] += a[i] * b[j];*/ radd( &temp, &pt3[k], &pt3[k] ); } ++p; } if( nc > MAXPOL ) nc = MAXPOL; for( i=0; i<=nc; i++ ) { c[i].n = pt3[i].n; c[i].d = pt3[i].d; } } /* c = b + a. */ void poladd( a, na, b, nb, c ) fract a[], b[], c[]; int na, nb; { int i, n; if( na > nb ) n = na; else n = nb; if( n > MAXPOL ) n = MAXPOL; for( i=0; i<=n; i++ ) { if( i > na ) { c[i].n = b[i].n; c[i].d = b[i].d; } else if( i > nb ) { c[i].n = a[i].n; c[i].d = a[i].d; } else { radd( &a[i], &b[i], &c[i] ); /*c[i] = b[i] + a[i];*/ } } } /* c = b - a. */ void polsub( a, na, b, nb, c ) fract a[], b[], c[]; int na, nb; { int i, n; if( na > nb ) n = na; else n = nb; if( n > MAXPOL ) n = MAXPOL; for( i=0; i<=n; i++ ) { if( i > na ) { c[i].n = b[i].n; c[i].d = b[i].d; } else if( i > nb ) { c[i].n = -a[i].n; c[i].d = a[i].d; } else { rsub( &a[i], &b[i], &c[i] ); /*c[i] = b[i] - a[i];*/ } } } /* c = b/a */ int poldiv( a, na, b, nb, c ) fract a[], b[], c[]; int na, nb; { fract *ta, *tb, *tq; fract quot; fract temp; int i, j, k, sing; sing = 0; /* Allocate temporary arrays. This would be quicker * if done automatically on the stack, but stack space * may be hard to obtain on a small computer. */ ta = (fract * )malloc( psize ); polclr( ta, MAXPOL ); polmov( a, na, ta ); tb = (fract * )malloc( psize ); polclr( tb, MAXPOL ); polmov( b, nb, tb ); tq = (fract * )malloc( psize ); polclr( tq, MAXPOL ); /* What to do if leading (constant) coefficient * of denominator is zero. */ if( a[0].n == 0.0 ) { for( i=0; i<=na; i++ ) { if( ta[i].n != 0.0 ) goto nzero; } mtherr( "poldiv", SING ); goto done; nzero: /* Reduce the degree of the denominator. */ for( i=0; i<na; i++ ) { ta[i].n = ta[i+1].n; ta[i].d = ta[i+1].d; } ta[na].n = 0.0; ta[na].d = 1.0; if( b[0].n != 0.0 ) { /* Optional message: printf( "poldiv singularity, divide quotient by x\n" ); */ sing += 1; } else { /* Reduce degree of numerator. */ for( i=0; i<nb; i++ ) { tb[i].n = tb[i+1].n; tb[i].d = tb[i+1].d; } tb[nb].n = 0.0; tb[nb].d = 1.0; } /* Call self, using reduced polynomials. */ sing += poldiv( ta, na, tb, nb, c ); goto done; } /* Long division algorithm. ta[0] is nonzero. */ for( i=0; i<=MAXPOL; i++ ) { rdiv( &ta[0], &tb[i], " ); /*quot = tb[i]/ta[0];*/ for( j=0; j<=MAXPOL; j++ ) { k = j + i; if( k > MAXPOL ) break; rmul( &ta[j], ", &temp ); /*tb[k] -= quot * ta[j];*/ rsub( &temp, &tb[k], &tb[k] ); } tq[i].n = quot.n; tq[i].d = quot.d; } /* Send quotient to output array. */ polmov( tq, MAXPOL, c ); done: /* Restore allocated memory. */ free(tq); free(tb); free(ta); return( sing ); } /* Change of variables * Substitute a(y) for the variable x in b(x). * x = a(y) * c(x) = b(x) = b(a(y)). */ void polsbt( a, na, b, nb, c ) fract a[], b[], c[]; int na, nb; { int i, j, k, n2; fract temp; fract *p; /* 0th degree term: */ polclr( pt1, MAXPOL ); pt1[0].n = b[0].n; pt1[0].d = b[0].d; polclr( pt2, MAXPOL ); pt2[0].n = 1.0; pt2[0].d = 1.0; n2 = 0; p = &b[1]; for( i=1; i<=nb; i++ ) { /* Form ith power of a. */ polmul( a, na, pt2, n2, pt2 ); n2 += na; /* Add the ith coefficient of b times the ith power of a. */ for( j=0; j<=n2; j++ ) { if( j > MAXPOL ) break; rmul( &pt2[j], p, &temp ); /*pt1[j] += b[i] * pt2[j];*/ radd( &temp, &pt1[j], &pt1[j] ); } ++p; } k = n2 + nb; if( k > MAXPOL ) k = MAXPOL; for( i=0; i<=k; i++ ) { c[i].n = pt1[i].n; c[i].d = pt1[i].d; } } /* Evaluate polynomial a(t) at t = x. */ void poleva( a, na, x, s ) fract a[]; int na; fract *x; fract *s; { int i; fract temp; s->n = a[na].n; s->d = a[na].d; for( i=na-1; i>=0; i-- ) { rmul( s, x, &temp ); /*s = s * x + a[i];*/ radd( &a[i], &temp, s ); } }