/* Functions to compute SHA512 message digest of files or memory blocks. according to the definition of SHA512 in FIPS 180-2. Copyright (C) 2007 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ /* Written by Ulrich Drepper <drepper@redhat.com>, 2007. */ #ifdef HAVE_CONFIG_H # include <config.h> #endif #include <endian.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include "sha512.h" #if __BYTE_ORDER == __LITTLE_ENDIAN # ifdef _LIBC # include <byteswap.h> # define SWAP(n) bswap_64 (n) # else # define SWAP(n) \ (((n) << 56) \ | (((n) & 0xff00) << 40) \ | (((n) & 0xff0000) << 24) \ | (((n) & 0xff000000) << 8) \ | (((n) >> 8) & 0xff000000) \ | (((n) >> 24) & 0xff0000) \ | (((n) >> 40) & 0xff00) \ | ((n) >> 56)) # endif #else # define SWAP(n) (n) #endif /* This array contains the bytes used to pad the buffer to the next 64-byte boundary. (FIPS 180-2:5.1.2) */ static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; /* Constants for SHA512 from FIPS 180-2:4.2.3. */ static const uint64_t K[80] = { UINT64_C (0x428a2f98d728ae22), UINT64_C (0x7137449123ef65cd), UINT64_C (0xb5c0fbcfec4d3b2f), UINT64_C (0xe9b5dba58189dbbc), UINT64_C (0x3956c25bf348b538), UINT64_C (0x59f111f1b605d019), UINT64_C (0x923f82a4af194f9b), UINT64_C (0xab1c5ed5da6d8118), UINT64_C (0xd807aa98a3030242), UINT64_C (0x12835b0145706fbe), UINT64_C (0x243185be4ee4b28c), UINT64_C (0x550c7dc3d5ffb4e2), UINT64_C (0x72be5d74f27b896f), UINT64_C (0x80deb1fe3b1696b1), UINT64_C (0x9bdc06a725c71235), UINT64_C (0xc19bf174cf692694), UINT64_C (0xe49b69c19ef14ad2), UINT64_C (0xefbe4786384f25e3), UINT64_C (0x0fc19dc68b8cd5b5), UINT64_C (0x240ca1cc77ac9c65), UINT64_C (0x2de92c6f592b0275), UINT64_C (0x4a7484aa6ea6e483), UINT64_C (0x5cb0a9dcbd41fbd4), UINT64_C (0x76f988da831153b5), UINT64_C (0x983e5152ee66dfab), UINT64_C (0xa831c66d2db43210), UINT64_C (0xb00327c898fb213f), UINT64_C (0xbf597fc7beef0ee4), UINT64_C (0xc6e00bf33da88fc2), UINT64_C (0xd5a79147930aa725), UINT64_C (0x06ca6351e003826f), UINT64_C (0x142929670a0e6e70), UINT64_C (0x27b70a8546d22ffc), UINT64_C (0x2e1b21385c26c926), UINT64_C (0x4d2c6dfc5ac42aed), UINT64_C (0x53380d139d95b3df), UINT64_C (0x650a73548baf63de), UINT64_C (0x766a0abb3c77b2a8), UINT64_C (0x81c2c92e47edaee6), UINT64_C (0x92722c851482353b), UINT64_C (0xa2bfe8a14cf10364), UINT64_C (0xa81a664bbc423001), UINT64_C (0xc24b8b70d0f89791), UINT64_C (0xc76c51a30654be30), UINT64_C (0xd192e819d6ef5218), UINT64_C (0xd69906245565a910), UINT64_C (0xf40e35855771202a), UINT64_C (0x106aa07032bbd1b8), UINT64_C (0x19a4c116b8d2d0c8), UINT64_C (0x1e376c085141ab53), UINT64_C (0x2748774cdf8eeb99), UINT64_C (0x34b0bcb5e19b48a8), UINT64_C (0x391c0cb3c5c95a63), UINT64_C (0x4ed8aa4ae3418acb), UINT64_C (0x5b9cca4f7763e373), UINT64_C (0x682e6ff3d6b2b8a3), UINT64_C (0x748f82ee5defb2fc), UINT64_C (0x78a5636f43172f60), UINT64_C (0x84c87814a1f0ab72), UINT64_C (0x8cc702081a6439ec), UINT64_C (0x90befffa23631e28), UINT64_C (0xa4506cebde82bde9), UINT64_C (0xbef9a3f7b2c67915), UINT64_C (0xc67178f2e372532b), UINT64_C (0xca273eceea26619c), UINT64_C (0xd186b8c721c0c207), UINT64_C (0xeada7dd6cde0eb1e), UINT64_C (0xf57d4f7fee6ed178), UINT64_C (0x06f067aa72176fba), UINT64_C (0x0a637dc5a2c898a6), UINT64_C (0x113f9804bef90dae), UINT64_C (0x1b710b35131c471b), UINT64_C (0x28db77f523047d84), UINT64_C (0x32caab7b40c72493), UINT64_C (0x3c9ebe0a15c9bebc), UINT64_C (0x431d67c49c100d4c), UINT64_C (0x4cc5d4becb3e42b6), UINT64_C (0x597f299cfc657e2a), UINT64_C (0x5fcb6fab3ad6faec), UINT64_C (0x6c44198c4a475817) }; /* Process LEN bytes of BUFFER, accumulating context into CTX. It is assumed that LEN % 128 == 0. */ static void sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx) { const uint64_t *words = buffer; size_t nwords = len / sizeof (uint64_t); uint64_t a = ctx->H[0]; uint64_t b = ctx->H[1]; uint64_t c = ctx->H[2]; uint64_t d = ctx->H[3]; uint64_t e = ctx->H[4]; uint64_t f = ctx->H[5]; uint64_t g = ctx->H[6]; uint64_t h = ctx->H[7]; /* First increment the byte count. FIPS 180-2 specifies the possible length of the file up to 2^128 bits. Here we only compute the number of bytes. Do a double word increment. */ ctx->total[0] += len; if (ctx->total[0] < len) ++ctx->total[1]; /* Process all bytes in the buffer with 128 bytes in each round of the loop. */ while (nwords > 0) { uint64_t W[80]; uint64_t a_save = a; uint64_t b_save = b; uint64_t c_save = c; uint64_t d_save = d; uint64_t e_save = e; uint64_t f_save = f; uint64_t g_save = g; uint64_t h_save = h; /* Operators defined in FIPS 180-2:4.1.2. */ #define Ch(x, y, z) ((x & y) ^ (~x & z)) #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) #define S0(x) (CYCLIC (x, 28) ^ CYCLIC (x, 34) ^ CYCLIC (x, 39)) #define S1(x) (CYCLIC (x, 14) ^ CYCLIC (x, 18) ^ CYCLIC (x, 41)) #define R0(x) (CYCLIC (x, 1) ^ CYCLIC (x, 8) ^ (x >> 7)) #define R1(x) (CYCLIC (x, 19) ^ CYCLIC (x, 61) ^ (x >> 6)) /* It is unfortunate that C does not provide an operator for cyclic rotation. Hope the C compiler is smart enough. */ #define CYCLIC(w, s) ((w >> s) | (w << (64 - s))) /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */ for (unsigned int t = 0; t < 16; ++t) { W[t] = SWAP (*words); ++words; } for (unsigned int t = 16; t < 80; ++t) W[t] = R1 (W[t - 2]) + W[t - 7] + R0 (W[t - 15]) + W[t - 16]; /* The actual computation according to FIPS 180-2:6.3.2 step 3. */ for (unsigned int t = 0; t < 80; ++t) { uint64_t T1 = h + S1 (e) + Ch (e, f, g) + K[t] + W[t]; uint64_t T2 = S0 (a) + Maj (a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } /* Add the starting values of the context according to FIPS 180-2:6.3.2 step 4. */ a += a_save; b += b_save; c += c_save; d += d_save; e += e_save; f += f_save; g += g_save; h += h_save; /* Prepare for the next round. */ nwords -= 16; } /* Put checksum in context given as argument. */ ctx->H[0] = a; ctx->H[1] = b; ctx->H[2] = c; ctx->H[3] = d; ctx->H[4] = e; ctx->H[5] = f; ctx->H[6] = g; ctx->H[7] = h; } /* Initialize structure containing state of computation. (FIPS 180-2:5.3.3) */ void __sha512_init_ctx (struct sha512_ctx *ctx) { ctx->H[0] = UINT64_C (0x6a09e667f3bcc908); ctx->H[1] = UINT64_C (0xbb67ae8584caa73b); ctx->H[2] = UINT64_C (0x3c6ef372fe94f82b); ctx->H[3] = UINT64_C (0xa54ff53a5f1d36f1); ctx->H[4] = UINT64_C (0x510e527fade682d1); ctx->H[5] = UINT64_C (0x9b05688c2b3e6c1f); ctx->H[6] = UINT64_C (0x1f83d9abfb41bd6b); ctx->H[7] = UINT64_C (0x5be0cd19137e2179); ctx->total[0] = ctx->total[1] = 0; ctx->buflen = 0; } /* Process the remaining bytes in the internal buffer and the usual prolog according to the standard and write the result to RESBUF. IMPORTANT: On some systems it is required that RESBUF is correctly aligned for a 32 bits value. */ void * __sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf) { /* Take yet unprocessed bytes into account. */ uint64_t bytes = ctx->buflen; size_t pad; /* Now count remaining bytes. */ ctx->total[0] += bytes; if (ctx->total[0] < bytes) ++ctx->total[1]; pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes; memcpy (&ctx->buffer[bytes], fillbuf, pad); /* Put the 128-bit file length in *bits* at the end of the buffer. */ *(uint64_t *) &ctx->buffer[bytes + pad + 8] = SWAP (ctx->total[0] << 3); *(uint64_t *) &ctx->buffer[bytes + pad] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 61)); /* Process last bytes. */ sha512_process_block (ctx->buffer, bytes + pad + 16, ctx); /* Put result from CTX in first 64 bytes following RESBUF. */ for (unsigned int i = 0; i < 8; ++i) ((uint64_t *) resbuf)[i] = SWAP (ctx->H[i]); return resbuf; } void __sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx) { /* When we already have some bits in our internal buffer concatenate both inputs first. */ if (ctx->buflen != 0) { size_t left_over = ctx->buflen; size_t add = 256 - left_over > len ? len : 256 - left_over; memcpy (&ctx->buffer[left_over], buffer, add); ctx->buflen += add; if (ctx->buflen > 128) { sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx); ctx->buflen &= 127; /* The regions in the following copy operation cannot overlap. */ memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~127], ctx->buflen); } buffer = (const char *) buffer + add; len -= add; } /* Process available complete blocks. */ if (len >= 128) { #if __GNUC__ >= 2 # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint64_t) != 0) #else # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint64_t) != 0) #endif if (UNALIGNED_P (buffer)) while (len > 128) { sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx); buffer = (const char *) buffer + 128; len -= 128; } else { sha512_process_block (buffer, len & ~127, ctx); buffer = (const char *) buffer + (len & ~127); len &= 127; } } /* Move remaining bytes into internal buffer. */ if (len > 0) { size_t left_over = ctx->buflen; memcpy (&ctx->buffer[left_over], buffer, len); left_over += len; if (left_over >= 128) { sha512_process_block (ctx->buffer, 128, ctx); left_over -= 128; memcpy (ctx->buffer, &ctx->buffer[128], left_over); } ctx->buflen = left_over; } }