/* Optimized version of the standard memcpy() function. This file is part of the GNU C Library. Copyright (C) 2000, 2001, 2003 Free Software Foundation, Inc. Contributed by Dan Pop for Itanium . Rewritten for McKinley by Sverre Jarp, HP Labs/CERN The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ /* Return: dest Inputs: in0: dest in1: src in2: byte count An assembly implementation of the algorithm used by the generic C version from glibc. The case when source and sest are aligned is treated separately, for extra performance. In this form, memcpy assumes little endian mode. For big endian mode, sh1 must be computed using an extra instruction: sub sh1 = 64, sh1 and the order of r[MEMLAT] and r[MEMLAT+1] must be reverted in the shrp instruction. */ #define USE_LFETCH #define USE_FLP #include "sysdep.h" #undef ret #define LFETCH_DIST 500 #define ALIGN_UNROLL_no 4 // no. of elements #define ALIGN_UNROLL_sh 2 // (shift amount) #define MEMLAT 8 #define Nrot ((4*(MEMLAT+2) + 7) & ~7) #define OP_T_THRES 16 #define OPSIZ 8 #define loopcnt r14 #define elemcnt r15 #define saved_pr r16 #define saved_lc r17 #define adest r18 #define dest r19 #define asrc r20 #define src r21 #define len r22 #define tmp2 r23 #define tmp3 r24 #define tmp4 r25 #define ptable r26 #define ploop56 r27 #define loopaddr r28 #define sh1 r29 #define ptr1 r30 #define ptr2 r31 #define movi0 mov #define p_scr p6 #define p_xtr p7 #define p_nxtr p8 #define p_few p9 #if defined(USE_FLP) #define load ldf8 #define store stf8 #define tempreg f6 #define the_r fr #define the_s fs #define the_t ft #define the_q fq #define the_w fw #define the_x fx #define the_y fy #define the_z fz #elif defined(USE_INT) #define load ld8 #define store st8 #define tempreg tmp2 #define the_r r #define the_s s #define the_t t #define the_q q #define the_w w #define the_x x #define the_y y #define the_z z #endif #ifdef GAS_ALIGN_BREAKS_UNWIND_INFO /* Manually force proper loop-alignment. Note: be sure to double-check the code-layout after making any changes to this routine! */ # define ALIGN(n) { nop 0 } #else # define ALIGN(n) .align n #endif #if defined(USE_LFETCH) #define LOOP(shift) \ ALIGN(32); \ .loop##shift##: \ { .mmb \ (p[0]) ld8.nt1 r[0] = [asrc], 8 ; \ (p[0]) lfetch.nt1 [ptr1], 16 ; \ nop.b 0 ; \ } { .mib \ (p[MEMLAT+1]) st8 [dest] = tmp3, 8 ; \ (p[MEMLAT]) shrp tmp3 = r[MEMLAT], s[MEMLAT+1], shift ; \ nop.b 0 ;; \ } { .mmb \ (p[0]) ld8.nt1 s[0] = [asrc], 8 ; \ (p[0]) lfetch.nt1 [ptr2], 16 ; \ nop.b 0 ; \ } { .mib \ (p[MEMLAT+1]) st8 [dest] = tmp4, 8 ; \ (p[MEMLAT]) shrp tmp4 = s[MEMLAT], r[MEMLAT], shift ; \ br.ctop.sptk.many .loop##shift \ ;; } \ { .mib \ br.cond.sptk.many .copy_bytes ; /* deal with the remaining bytes */ \ } #else #define LOOP(shift) \ ALIGN(32); \ .loop##shift##: \ { .mmb \ (p[0]) ld8.nt1 r[0] = [asrc], 8 ; \ nop.b 0 ; \ } { .mib \ (p[MEMLAT+1]) st8 [dest] = tmp3, 8 ; \ (p[MEMLAT]) shrp tmp3 = r[MEMLAT], s[MEMLAT+1], shift ; \ nop.b 0 ;; \ } { .mmb \ (p[0]) ld8.nt1 s[0] = [asrc], 8 ; \ nop.b 0 ; \ } { .mib \ (p[MEMLAT+1]) st8 [dest] = tmp4, 8 ; \ (p[MEMLAT]) shrp tmp4 = s[MEMLAT], r[MEMLAT], shift ; \ br.ctop.sptk.many .loop##shift \ ;; } \ { .mib \ br.cond.sptk.many .copy_bytes ; /* deal with the remaining bytes */ \ } #endif ENTRY(memcpy) { .mmi .prologue alloc r2 = ar.pfs, 3, Nrot - 3, 0, Nrot .rotr r[MEMLAT+1], s[MEMLAT+2], q[MEMLAT+1], t[MEMLAT+1] .rotp p[MEMLAT+2] .rotf fr[MEMLAT+1], fq[MEMLAT+1], fs[MEMLAT+1], ft[MEMLAT+1] mov ret0 = in0 // return tmp2 = dest .save pr, saved_pr movi0 saved_pr = pr // save the predicate registers } { .mmi and tmp4 = 7, in0 // check if destination is aligned mov dest = in0 // dest mov src = in1 // src ;; } { .mii cmp.eq p_scr, p0 = in2, r0 // if (len == 0) .save ar.lc, saved_lc movi0 saved_lc = ar.lc // save the loop counter .body cmp.ge p_few, p0 = OP_T_THRES, in2 // is len <= OP_T_THRESH } { .mbb mov len = in2 // len (p_scr) br.cond.dpnt.few .restore_and_exit // Branch no. 1: return dest (p_few) br.cond.dpnt.many .copy_bytes // Branch no. 2: copy byte by byte ;; } { .mmi #if defined(USE_LFETCH) lfetch.nt1 [dest] // lfetch.nt1 [src] // #endif shr.u elemcnt = len, 3 // elemcnt = len / 8 } { .mib cmp.eq p_scr, p0 = tmp4, r0 // is destination aligned? sub loopcnt = 7, tmp4 // (p_scr) br.cond.dptk.many .dest_aligned ;; } { .mmi ld1 tmp2 = [src], 1 // sub len = len, loopcnt, 1 // reduce len movi0 ar.lc = loopcnt // } { .mib cmp.ne p_scr, p0 = 0, loopcnt // avoid loading beyond end-point ;; } .l0: // ---------------------------- // L0: Align src on 8-byte boundary { .mmi st1 [dest] = tmp2, 1 // (p_scr) ld1 tmp2 = [src], 1 // } { .mib cmp.lt p_scr, p0 = 1, loopcnt // avoid load beyond end-point add loopcnt = -1, loopcnt br.cloop.dptk.few .l0 // ;; } .dest_aligned: { .mmi and tmp4 = 7, src // ready for alignment check shr.u elemcnt = len, 3 // elemcnt = len / 8 ;; } { .mib cmp.ne p_scr, p0 = tmp4, r0 // is source also aligned tbit.nz p_xtr, p_nxtr = src, 3 // prepare a separate move if src } { .mib // is not 16B aligned add ptr2 = LFETCH_DIST, dest // prefetch address add ptr1 = LFETCH_DIST, src (p_scr) br.cond.dptk.many .src_not_aligned ;; } // The optimal case, when dest, and src are aligned .both_aligned: { .mmi .pred.rel "mutex",p_xtr,p_nxtr (p_xtr) cmp.gt p_scr, p0 = ALIGN_UNROLL_no+1, elemcnt // Need N + 1 to qualify (p_nxtr) cmp.gt p_scr, p0 = ALIGN_UNROLL_no, elemcnt // Need only N to qualify movi0 pr.rot = 1 << 16 // set rotating predicates } { .mib (p_scr) br.cond.dpnt.many .copy_full_words ;; } { .mmi (p_xtr) load tempreg = [src], 8 (p_xtr) add elemcnt = -1, elemcnt movi0 ar.ec = MEMLAT + 1 // set the epilog counter ;; } { .mmi (p_xtr) add len = -8, len // add asrc = 16, src // one bank apart (for USE_INT) shr.u loopcnt = elemcnt, ALIGN_UNROLL_sh // cater for unrolling ;;} { .mmi add loopcnt = -1, loopcnt (p_xtr) store [dest] = tempreg, 8 // copy the "extra" word nop.i 0 ;; } { .mib add adest = 16, dest movi0 ar.lc = loopcnt // set the loop counter ;; } #ifdef GAS_ALIGN_BREAKS_UNWIND_INFO { nop 0 } #else .align 32 #endif #if defined(USE_FLP) .l1: // ------------------------------- // L1: Everything a multiple of 8 { .mmi #if defined(USE_LFETCH) (p[0]) lfetch.nt1 [ptr2],32 #endif (p[0]) ldfp8 the_r[0],the_q[0] = [src], 16 (p[0]) add len = -32, len } {.mmb (p[MEMLAT]) store [dest] = the_r[MEMLAT], 8 (p[MEMLAT]) store [adest] = the_s[MEMLAT], 8 ;; } { .mmi #if defined(USE_LFETCH) (p[0]) lfetch.nt1 [ptr1],32 #endif (p[0]) ldfp8 the_s[0], the_t[0] = [src], 16 } {.mmb (p[MEMLAT]) store [dest] = the_q[MEMLAT], 24 (p[MEMLAT]) store [adest] = the_t[MEMLAT], 24 br.ctop.dptk.many .l1 ;; } #elif defined(USE_INT) .l1: // ------------------------------- // L1: Everything a multiple of 8 { .mmi (p[0]) load the_r[0] = [src], 8 (p[0]) load the_q[0] = [asrc], 8 (p[0]) add len = -32, len } {.mmb (p[MEMLAT]) store [dest] = the_r[MEMLAT], 8 (p[MEMLAT]) store [adest] = the_q[MEMLAT], 8 ;; } { .mmi (p[0]) load the_s[0] = [src], 24 (p[0]) load the_t[0] = [asrc], 24 } {.mmb (p[MEMLAT]) store [dest] = the_s[MEMLAT], 24 (p[MEMLAT]) store [adest] = the_t[MEMLAT], 24 #if defined(USE_LFETCH) ;; } { .mmb (p[0]) lfetch.nt1 [ptr2],32 (p[0]) lfetch.nt1 [ptr1],32 #endif br.ctop.dptk.many .l1 ;; } #endif .copy_full_words: { .mib cmp.gt p_scr, p0 = 8, len // shr.u elemcnt = len, 3 // (p_scr) br.cond.dpnt.many .copy_bytes ;; } { .mii load tempreg = [src], 8 add loopcnt = -1, elemcnt // ;; } { .mii cmp.ne p_scr, p0 = 0, loopcnt // mov ar.lc = loopcnt // ;; } .l2: // ------------------------------- // L2: Max 4 words copied separately { .mmi store [dest] = tempreg, 8 (p_scr) load tempreg = [src], 8 // add len = -8, len } { .mib cmp.lt p_scr, p0 = 1, loopcnt // avoid load beyond end-point add loopcnt = -1, loopcnt br.cloop.dptk.few .l2 ;; } .copy_bytes: { .mib cmp.eq p_scr, p0 = len, r0 // is len == 0 ? add loopcnt = -1, len // len--; (p_scr) br.cond.spnt .restore_and_exit ;; } { .mii ld1 tmp2 = [src], 1 movi0 ar.lc = loopcnt cmp.ne p_scr, p0 = 0, loopcnt // avoid load beyond end-point ;; } .l3: // ------------------------------- // L3: Final byte move { .mmi st1 [dest] = tmp2, 1 (p_scr) ld1 tmp2 = [src], 1 } { .mib cmp.lt p_scr, p0 = 1, loopcnt // avoid load beyond end-point add loopcnt = -1, loopcnt br.cloop.dptk.few .l3 ;; } .restore_and_exit: { .mmi movi0 pr = saved_pr, -1 // restore the predicate registers ;; } { .mib movi0 ar.lc = saved_lc // restore the loop counter br.ret.sptk.many b0 ;; } .src_not_aligned: { .mmi cmp.gt p_scr, p0 = 16, len and sh1 = 7, src // sh1 = src % 8 shr.u loopcnt = len, 4 // element-cnt = len / 16 } { .mib add tmp4 = @ltoff(.table), gp add tmp3 = @ltoff(.loop56), gp (p_scr) br.cond.dpnt.many .copy_bytes // do byte by byte if too few ;; } { .mmi and asrc = -8, src // asrc = (-8) -- align src for loop add loopcnt = -1, loopcnt // loopcnt-- shl sh1 = sh1, 3 // sh1 = 8 * (src % 8) } { .mmi ld8 ptable = [tmp4] // ptable = &table ld8 ploop56 = [tmp3] // ploop56 = &loop56 and tmp2 = -16, len // tmp2 = len & -OPSIZ ;; } { .mmi add tmp3 = ptable, sh1 // tmp3 = &table + sh1 add src = src, tmp2 // src += len & (-16) movi0 ar.lc = loopcnt // set LC ;; } { .mmi ld8 tmp4 = [tmp3] // tmp4 = loop offset sub len = len, tmp2 // len -= len & (-16) movi0 ar.ec = MEMLAT + 2 // one more pass needed ;; } { .mmi ld8 s[1] = [asrc], 8 // preload sub loopaddr = ploop56,tmp4 // loopadd = &loop56 - loop offset movi0 pr.rot = 1 << 16 // set rotating predicates ;; } { .mib nop.m 0 movi0 b6 = loopaddr br b6 // jump to the appropriate loop ;; } LOOP(8) LOOP(16) LOOP(24) LOOP(32) LOOP(40) LOOP(48) LOOP(56) END(memcpy) libc_hidden_def (memcpy) .rodata .align 8 .table: data8 0 // dummy entry data8 .loop56 - .loop8 data8 .loop56 - .loop16 data8 .loop56 - .loop24 data8 .loop56 - .loop32 data8 .loop56 - .loop40 data8 .loop56 - .loop48 data8 .loop56 - .loop56