/* Extended regular expression matching and search library, version 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the internationalization features.) Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ /* To exclude some unwanted junk.... */ #undef emacs #include <features.h> /* unistd.h must be included with _LIBC defined: we need smallint */ #include <unistd.h> #include <stdio.h> #ifdef __UCLIBC__ # undef _LIBC # define _REGEX_RE_COMP # define STDC_HEADERS # define __RE_TRANSLATE_TYPE char * # define RE_TRANSLATE_TYPE __RE_TRANSLATE_TYPE #endif #include <stdlib.h> #include <stdint.h> #include <string.h> /* AIX requires this to be the first thing in the file. */ #if defined _AIX && !defined REGEX_MALLOC # pragma alloca #endif #ifdef HAVE_CONFIG_H # include <config.h> #endif #ifndef INSIDE_RECURSION # if defined STDC_HEADERS && !defined emacs # include <stddef.h> # else /* We need this for `regex.h', and perhaps for the Emacs include files. */ # include <sys/types.h> # endif /* For platform which support the ISO C amendement 1 functionality we support user defined character classes. */ # if defined __UCLIBC_HAS_WCHAR__ # define WIDE_CHAR_SUPPORT 1 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */ # include <wchar.h> # include <wctype.h> # endif # ifdef _LIBC /* We have to keep the namespace clean. */ # define btowc __btowc /* We are also using some library internals. */ # include <locale/localeinfo.h> # include <locale/elem-hash.h> # include <langinfo.h> # include <locale/coll-lookup.h> # endif /* This is for other GNU distributions with internationalized messages. */ # if defined HAVE_LIBINTL_H || defined _LIBC # include <libintl.h> # ifdef _LIBC # undef gettext # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES) # endif # else # define gettext(msgid) (msgid) # endif # ifndef gettext_noop /* This define is so xgettext can find the internationalizable strings. */ # define gettext_noop(String) String # endif /* The `emacs' switch turns on certain matching commands that make sense only in Emacs. */ # ifdef emacs # include "lisp.h" # include "buffer.h" # include "syntax.h" # else /* not emacs */ /* If we are not linking with Emacs proper, we can't use the relocating allocator even if config.h says that we can. */ # undef REL_ALLOC # if defined STDC_HEADERS || defined _LIBC # include <stdlib.h> # else char *malloc (); char *realloc (); # endif /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. If nothing else has been done, use the method below. */ # ifdef INHIBIT_STRING_HEADER # if !(defined HAVE_BZERO && defined HAVE_BCOPY) # if !defined bzero && !defined bcopy # undef INHIBIT_STRING_HEADER # endif # endif # endif /* This is the normal way of making sure we have a bcopy and a bzero. This is used in most programs--a few other programs avoid this by defining INHIBIT_STRING_HEADER. */ # ifndef INHIBIT_STRING_HEADER # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC # include <string.h> # ifndef bzero # ifndef _LIBC # define bzero(s, n) (memset (s, '\0', n), (s)) # else # define bzero(s, n) __bzero (s, n) # endif # endif # else # include <strings.h> # ifndef memcmp # define memcmp(s1, s2, n) bcmp (s1, s2, n) # endif # ifndef memcpy # define memcpy(d, s, n) (bcopy (s, d, n), (d)) # endif # endif # endif /* Define the syntax stuff for \<, \>, etc. */ /* This must be nonzero for the wordchar and notwordchar pattern commands in re_match_2. */ # ifndef Sword # define Sword 1 # endif # ifdef SWITCH_ENUM_BUG # define SWITCH_ENUM_CAST(x) ((int)(x)) # else # define SWITCH_ENUM_CAST(x) (x) # endif # endif /* not emacs */ # if defined _LIBC || defined HAVE_LIMITS_H # include <limits.h> # endif # ifndef MB_LEN_MAX # define MB_LEN_MAX 1 # endif /* Get the interface, including the syntax bits. */ # include <regex.h> # define translate __REPB_PREFIX(translate) /* isalpha etc. are used for the character classes. */ # include <ctype.h> /* Jim Meyering writes: "... Some ctype macros are valid only for character codes that isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when using /bin/cc or gcc but without giving an ansi option). So, all ctype uses should be through macros like ISPRINT... If STDC_HEADERS is defined, then autoconf has verified that the ctype macros don't need to be guarded with references to isascii. ... Defining isascii to 1 should let any compiler worth its salt eliminate the && through constant folding." Solaris defines some of these symbols so we must undefine them first. */ # undef ISASCII # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII) # define ISASCII(c) 1 # else # define ISASCII(c) isascii(c) # endif # ifdef isblank # define ISBLANK(c) (ISASCII (c) && isblank (c)) # else # define ISBLANK(c) ((c) == ' ' || (c) == '\t') # endif # ifdef isgraph # define ISGRAPH(c) (ISASCII (c) && isgraph (c)) # else # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) # endif # undef ISPRINT # define ISPRINT(c) (ISASCII (c) && isprint (c)) # define ISDIGIT(c) (ISASCII (c) && isdigit (c)) # define ISALNUM(c) (ISASCII (c) && isalnum (c)) # define ISALPHA(c) (ISASCII (c) && isalpha (c)) # define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) # define ISLOWER(c) (ISASCII (c) && islower (c)) # define ISPUNCT(c) (ISASCII (c) && ispunct (c)) # define ISSPACE(c) (ISASCII (c) && isspace (c)) # define ISUPPER(c) (ISASCII (c) && isupper (c)) # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) # ifdef _tolower # define TOLOWER(c) _tolower(c) # else # define TOLOWER(c) tolower(c) # endif # ifndef NULL # define NULL (void *)0 # endif /* We remove any previous definition of `SIGN_EXTEND_CHAR', since ours (we hope) works properly with all combinations of machines, compilers, `char' and `unsigned char' argument types. (Per Bothner suggested the basic approach.) */ # undef SIGN_EXTEND_CHAR # if __STDC__ # define SIGN_EXTEND_CHAR(c) ((signed char) (c)) # else /* not __STDC__ */ /* As in Harbison and Steele. */ # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) # endif # ifndef emacs /* How many characters in the character set. */ # define CHAR_SET_SIZE 256 # ifdef SYNTAX_TABLE extern char *re_syntax_table; # else /* not SYNTAX_TABLE */ static char re_syntax_table[CHAR_SET_SIZE]; static void init_syntax_once (void); static void init_syntax_once (void) { register int c; static smallint done = 0; if (done) return; bzero (re_syntax_table, sizeof re_syntax_table); for (c = 0; c < CHAR_SET_SIZE; ++c) if (ISALNUM (c)) re_syntax_table[c] = Sword; re_syntax_table['_'] = Sword; done = 1; } # endif /* not SYNTAX_TABLE */ # define SYNTAX(c) re_syntax_table[(unsigned char) (c)] # endif /* emacs */ /* Integer type for pointers. */ # if !defined _LIBC && !defined __intptr_t_defined typedef unsigned long int uintptr_t; # endif /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we use `alloca' instead of `malloc'. This is because using malloc in re_search* or re_match* could cause memory leaks when C-g is used in Emacs; also, malloc is slower and causes storage fragmentation. On the other hand, malloc is more portable, and easier to debug. Because we sometimes use alloca, some routines have to be macros, not functions -- `alloca'-allocated space disappears at the end of the function it is called in. */ # ifdef REGEX_MALLOC # define REGEX_ALLOCATE malloc # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) # define REGEX_FREE free # else /* not REGEX_MALLOC */ /* Emacs already defines alloca, sometimes. */ # ifndef alloca /* Make alloca work the best possible way. */ # ifdef __GNUC__ # define alloca __builtin_alloca # else /* not __GNUC__ */ # if HAVE_ALLOCA_H # include <alloca.h> # endif /* HAVE_ALLOCA_H */ # endif /* not __GNUC__ */ # endif /* not alloca */ # define REGEX_ALLOCATE alloca /* Assumes a `char *destination' variable. */ # define REGEX_REALLOCATE(source, osize, nsize) \ (destination = (char *) alloca (nsize), \ memcpy (destination, source, osize)) /* No need to do anything to free, after alloca. */ # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ # endif /* not REGEX_MALLOC */ /* Define how to allocate the failure stack. */ # if defined REL_ALLOC && defined REGEX_MALLOC # define REGEX_ALLOCATE_STACK(size) \ r_alloc (&failure_stack_ptr, (size)) # define REGEX_REALLOCATE_STACK(source, osize, nsize) \ r_re_alloc (&failure_stack_ptr, (nsize)) # define REGEX_FREE_STACK(ptr) \ r_alloc_free (&failure_stack_ptr) # else /* not using relocating allocator */ # ifdef REGEX_MALLOC # define REGEX_ALLOCATE_STACK malloc # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) # define REGEX_FREE_STACK free # else /* not REGEX_MALLOC */ # define REGEX_ALLOCATE_STACK alloca # define REGEX_REALLOCATE_STACK(source, osize, nsize) \ REGEX_REALLOCATE (source, osize, nsize) /* No need to explicitly free anything. */ # define REGEX_FREE_STACK(arg) # endif /* not REGEX_MALLOC */ # endif /* not using relocating allocator */ /* True if `size1' is non-NULL and PTR is pointing anywhere inside `string1' or just past its end. This works if PTR is NULL, which is a good thing. */ # define FIRST_STRING_P(ptr) \ (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) /* (Re)Allocate N items of type T using malloc, or fail. */ # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) # define RETALLOC_IF(addr, n, t) \ if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) # define BYTEWIDTH 8 /* In bits. */ # define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) # undef MAX # undef MIN # define MAX(a, b) ((a) > (b) ? (a) : (b)) # define MIN(a, b) ((a) < (b) ? (a) : (b)) typedef char boolean; # define false 0 # define true 1 static reg_errcode_t byte_regex_compile (const char *pattern, size_t size, reg_syntax_t syntax, struct re_pattern_buffer *bufp); static int byte_re_match_2_internal (struct re_pattern_buffer *bufp, const char *string1, int size1, const char *string2, int size2, int pos, struct re_registers *regs, int stop); static int byte_re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1, const char *string2, int size2, int startpos, int range, struct re_registers *regs, int stop); static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp); #ifdef MBS_SUPPORT static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size, reg_syntax_t syntax, struct re_pattern_buffer *bufp); static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp, const char *cstring1, int csize1, const char *cstring2, int csize2, int pos, struct re_registers *regs, int stop, wchar_t *string1, int size1, wchar_t *string2, int size2, int *mbs_offset1, int *mbs_offset2); static int wcs_re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1, const char *string2, int size2, int startpos, int range, struct re_registers *regs, int stop); static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp); #endif /* These are the command codes that appear in compiled regular expressions. Some opcodes are followed by argument bytes. A command code can specify any interpretation whatsoever for its arguments. Zero bytes may appear in the compiled regular expression. */ typedef enum { no_op = 0, /* Succeed right away--no more backtracking. */ succeed, /* Followed by one byte giving n, then by n literal bytes. */ exactn, # ifdef MBS_SUPPORT /* Same as exactn, but contains binary data. */ exactn_bin, # endif /* Matches any (more or less) character. */ anychar, /* Matches any one char belonging to specified set. First following byte is number of bitmap bytes. Then come bytes for a bitmap saying which chars are in. Bits in each byte are ordered low-bit-first. A character is in the set if its bit is 1. A character too large to have a bit in the map is automatically not in the set. */ /* ifdef MBS_SUPPORT, following element is length of character classes, length of collating symbols, length of equivalence classes, length of character ranges, and length of characters. Next, character class element, collating symbols elements, equivalence class elements, range elements, and character elements follow. See regex_compile function. */ charset, /* Same parameters as charset, but match any character that is not one of those specified. */ charset_not, /* Start remembering the text that is matched, for storing in a register. Followed by one byte with the register number, in the range 0 to one less than the pattern buffer's re_nsub field. Then followed by one byte with the number of groups inner to this one. (This last has to be part of the start_memory only because we need it in the on_failure_jump of re_match_2.) */ start_memory, /* Stop remembering the text that is matched and store it in a memory register. Followed by one byte with the register number, in the range 0 to one less than `re_nsub' in the pattern buffer, and one byte with the number of inner groups, just like `start_memory'. (We need the number of inner groups here because we don't have any easy way of finding the corresponding start_memory when we're at a stop_memory.) */ stop_memory, /* Match a duplicate of something remembered. Followed by one byte containing the register number. */ duplicate, /* Fail unless at beginning of line. */ begline, /* Fail unless at end of line. */ endline, /* Succeeds if at beginning of buffer (if emacs) or at beginning of string to be matched (if not). */ begbuf, /* Analogously, for end of buffer/string. */ endbuf, /* Followed by two byte relative address to which to jump. */ jump, /* Same as jump, but marks the end of an alternative. */ jump_past_alt, /* Followed by two-byte relative address of place to resume at in case of failure. */ /* ifdef MBS_SUPPORT, the size of address is 1. */ on_failure_jump, /* Like on_failure_jump, but pushes a placeholder instead of the current string position when executed. */ on_failure_keep_string_jump, /* Throw away latest failure point and then jump to following two-byte relative address. */ /* ifdef MBS_SUPPORT, the size of address is 1. */ pop_failure_jump, /* Change to pop_failure_jump if know won't have to backtrack to match; otherwise change to jump. This is used to jump back to the beginning of a repeat. If what follows this jump clearly won't match what the repeat does, such that we can be sure that there is no use backtracking out of repetitions already matched, then we change it to a pop_failure_jump. Followed by two-byte address. */ /* ifdef MBS_SUPPORT, the size of address is 1. */ maybe_pop_jump, /* Jump to following two-byte address, and push a dummy failure point. This failure point will be thrown away if an attempt is made to use it for a failure. A `+' construct makes this before the first repeat. Also used as an intermediary kind of jump when compiling an alternative. */ /* ifdef MBS_SUPPORT, the size of address is 1. */ dummy_failure_jump, /* Push a dummy failure point and continue. Used at the end of alternatives. */ push_dummy_failure, /* Followed by two-byte relative address and two-byte number n. After matching N times, jump to the address upon failure. */ /* ifdef MBS_SUPPORT, the size of address is 1. */ succeed_n, /* Followed by two-byte relative address, and two-byte number n. Jump to the address N times, then fail. */ /* ifdef MBS_SUPPORT, the size of address is 1. */ jump_n, /* Set the following two-byte relative address to the subsequent two-byte number. The address *includes* the two bytes of number. */ /* ifdef MBS_SUPPORT, the size of address is 1. */ set_number_at, wordchar, /* Matches any word-constituent character. */ notwordchar, /* Matches any char that is not a word-constituent. */ wordbeg, /* Succeeds if at word beginning. */ wordend, /* Succeeds if at word end. */ wordbound, /* Succeeds if at a word boundary. */ notwordbound /* Succeeds if not at a word boundary. */ # ifdef emacs ,before_dot, /* Succeeds if before point. */ at_dot, /* Succeeds if at point. */ after_dot, /* Succeeds if after point. */ /* Matches any character whose syntax is specified. Followed by a byte which contains a syntax code, e.g., Sword. */ syntaxspec, /* Matches any character whose syntax is not that specified. */ notsyntaxspec # endif /* emacs */ } re_opcode_t; #endif /* not INSIDE_RECURSION */ #ifdef BYTE # define CHAR_T char # define UCHAR_T unsigned char # define COMPILED_BUFFER_VAR bufp->buffer # define OFFSET_ADDRESS_SIZE 2 # define PREFIX(name) byte_##name # define ARG_PREFIX(name) name # define PUT_CHAR(c) putchar (c) #else # ifdef WCHAR # define CHAR_T wchar_t # define UCHAR_T wchar_t # define COMPILED_BUFFER_VAR wc_buffer # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */ # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1) # define PREFIX(name) wcs_##name # define ARG_PREFIX(name) c##name /* Should we use wide stream?? */ # define PUT_CHAR(c) printf ("%C", c); # define TRUE 1 # define FALSE 0 # else # ifdef MBS_SUPPORT # define WCHAR # define INSIDE_RECURSION # include "regex_old.c" # undef INSIDE_RECURSION # endif # define BYTE # define INSIDE_RECURSION # include "regex_old.c" # undef INSIDE_RECURSION # endif #endif #ifdef INSIDE_RECURSION /* Common operations on the compiled pattern. */ /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ # ifdef WCHAR # define STORE_NUMBER(destination, number) \ do { \ *(destination) = (UCHAR_T)(number); \ } while (0) # else /* BYTE */ # define STORE_NUMBER(destination, number) \ do { \ (destination)[0] = (number) & 0377; \ (destination)[1] = (number) >> 8; \ } while (0) # endif /* WCHAR */ /* Same as STORE_NUMBER, except increment DESTINATION to the byte after where the number is stored. Therefore, DESTINATION must be an lvalue. */ /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ # define STORE_NUMBER_AND_INCR(destination, number) \ do { \ STORE_NUMBER (destination, number); \ (destination) += OFFSET_ADDRESS_SIZE; \ } while (0) /* Put into DESTINATION a number stored in two contiguous bytes starting at SOURCE. */ /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ # ifdef WCHAR # define EXTRACT_NUMBER(destination, source) \ do { \ (destination) = *(source); \ } while (0) # else /* BYTE */ # define EXTRACT_NUMBER(destination, source) \ do { \ (destination) = *(source) & 0377; \ (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ } while (0) # endif # ifdef DEBUG static void PREFIX(extract_number) (int *dest, UCHAR_T *source) { # ifdef WCHAR *dest = *source; # else /* BYTE */ int temp = SIGN_EXTEND_CHAR (*(source + 1)); *dest = *source & 0377; *dest += temp << 8; # endif } # ifndef EXTRACT_MACROS /* To debug the macros. */ # undef EXTRACT_NUMBER # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src) # endif /* not EXTRACT_MACROS */ # endif /* DEBUG */ /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. SOURCE must be an lvalue. */ # define EXTRACT_NUMBER_AND_INCR(destination, source) \ do { \ EXTRACT_NUMBER (destination, source); \ (source) += OFFSET_ADDRESS_SIZE; \ } while (0) # ifdef DEBUG static void PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source) { PREFIX(extract_number) (destination, *source); *source += OFFSET_ADDRESS_SIZE; } # ifndef EXTRACT_MACROS # undef EXTRACT_NUMBER_AND_INCR # define EXTRACT_NUMBER_AND_INCR(dest, src) \ PREFIX(extract_number_and_incr) (&dest, &src) # endif /* not EXTRACT_MACROS */ # endif /* DEBUG */ /* If DEBUG is defined, Regex prints many voluminous messages about what it is doing (if the variable `debug' is nonzero). If linked with the main program in `iregex.c', you can enter patterns and strings interactively. And if linked with the main program in `main.c' and the other test files, you can run the already-written tests. */ # ifdef DEBUG # ifndef DEFINED_ONCE /* We use standard I/O for debugging. */ # include <stdio.h> /* It is useful to test things that ``must'' be true when debugging. */ # include <assert.h> static smallint debug; # define DEBUG_STATEMENT(e) e # define DEBUG_PRINT1(x) if (debug) printf (x) # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) # endif /* not DEFINED_ONCE */ # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ if (debug) PREFIX(print_partial_compiled_pattern) (s, e) # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2) /* Print the fastmap in human-readable form. */ # ifndef DEFINED_ONCE static void print_fastmap (char *fastmap) { unsigned was_a_range = 0; unsigned i = 0; while (i < (1 << BYTEWIDTH)) { if (fastmap[i++]) { was_a_range = 0; putchar (i - 1); while (i < (1 << BYTEWIDTH) && fastmap[i]) { was_a_range = 1; i++; } if (was_a_range) { printf ("-"); putchar (i - 1); } } } putchar ('\n'); } # endif /* not DEFINED_ONCE */ /* Print a compiled pattern string in human-readable form, starting at the START pointer into it and ending just before the pointer END. */ static void PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end) { int mcnt, mcnt2; UCHAR_T *p1; UCHAR_T *p = start; UCHAR_T *pend = end; if (start == NULL) { printf ("(null)\n"); return; } /* Loop over pattern commands. */ while (p < pend) { # ifdef _LIBC printf ("%td:\t", p - start); # else printf ("%ld:\t", (long int) (p - start)); # endif switch ((re_opcode_t) *p++) { case no_op: printf ("/no_op"); break; case exactn: mcnt = *p++; printf ("/exactn/%d", mcnt); do { putchar ('/'); PUT_CHAR (*p++); } while (--mcnt); break; # ifdef MBS_SUPPORT case exactn_bin: mcnt = *p++; printf ("/exactn_bin/%d", mcnt); do { printf("/%lx", (long int) *p++); } while (--mcnt); break; # endif /* MBS_SUPPORT */ case start_memory: mcnt = *p++; printf ("/start_memory/%d/%ld", mcnt, (long int) *p++); break; case stop_memory: mcnt = *p++; printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++); break; case duplicate: printf ("/duplicate/%ld", (long int) *p++); break; case anychar: printf ("/anychar"); break; case charset: case charset_not: { # ifdef WCHAR int i, length; wchar_t *workp = p; printf ("/charset [%s", (re_opcode_t) *(workp - 1) == charset_not ? "^" : ""); p += 5; length = *workp++; /* the length of char_classes */ for (i=0 ; i<length ; i++) printf("[:%lx:]", (long int) *p++); length = *workp++; /* the length of collating_symbol */ for (i=0 ; i<length ;) { printf("[."); while(*p != 0) PUT_CHAR((i++,*p++)); i++,p++; printf(".]"); } length = *workp++; /* the length of equivalence_class */ for (i=0 ; i<length ;) { printf("[="); while(*p != 0) PUT_CHAR((i++,*p++)); i++,p++; printf("=]"); } length = *workp++; /* the length of char_range */ for (i=0 ; i<length ; i++) { wchar_t range_start = *p++; wchar_t range_end = *p++; printf("%C-%C", range_start, range_end); } length = *workp++; /* the length of char */ for (i=0 ; i<length ; i++) printf("%C", *p++); putchar (']'); # else register int c, last = -100; register int in_range = 0; printf ("/charset [%s", (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); assert (p + *p < pend); for (c = 0; c < 256; c++) if (c / 8 < *p && (p[1 + (c/8)] & (1 << (c % 8)))) { /* Are we starting a range? */ if (last + 1 == c && ! in_range) { putchar ('-'); in_range = 1; } /* Have we broken a range? */ else if (last + 1 != c && in_range) { putchar (last); in_range = 0; } if (! in_range) putchar (c); last = c; } if (in_range) putchar (last); putchar (']'); p += 1 + *p; # endif /* WCHAR */ } break; case begline: printf ("/begline"); break; case endline: printf ("/endline"); break; case on_failure_jump: PREFIX(extract_number_and_incr) (&mcnt, &p); # ifdef _LIBC printf ("/on_failure_jump to %td", p + mcnt - start); # else printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start)); # endif break; case on_failure_keep_string_jump: PREFIX(extract_number_and_incr) (&mcnt, &p); # ifdef _LIBC printf ("/on_failure_keep_string_jump to %td", p + mcnt - start); # else printf ("/on_failure_keep_string_jump to %ld", (long int) (p + mcnt - start)); # endif break; case dummy_failure_jump: PREFIX(extract_number_and_incr) (&mcnt, &p); # ifdef _LIBC printf ("/dummy_failure_jump to %td", p + mcnt - start); # else printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start)); # endif break; case push_dummy_failure: printf ("/push_dummy_failure"); break; case maybe_pop_jump: PREFIX(extract_number_and_incr) (&mcnt, &p); # ifdef _LIBC printf ("/maybe_pop_jump to %td", p + mcnt - start); # else printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start)); # endif break; case pop_failure_jump: PREFIX(extract_number_and_incr) (&mcnt, &p); # ifdef _LIBC printf ("/pop_failure_jump to %td", p + mcnt - start); # else printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start)); # endif break; case jump_past_alt: PREFIX(extract_number_and_incr) (&mcnt, &p); # ifdef _LIBC printf ("/jump_past_alt to %td", p + mcnt - start); # else printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start)); # endif break; case jump: PREFIX(extract_number_and_incr) (&mcnt, &p); # ifdef _LIBC printf ("/jump to %td", p + mcnt - start); # else printf ("/jump to %ld", (long int) (p + mcnt - start)); # endif break; case succeed_n: PREFIX(extract_number_and_incr) (&mcnt, &p); p1 = p + mcnt; PREFIX(extract_number_and_incr) (&mcnt2, &p); # ifdef _LIBC printf ("/succeed_n to %td, %d times", p1 - start, mcnt2); # else printf ("/succeed_n to %ld, %d times", (long int) (p1 - start), mcnt2); # endif break; case jump_n: PREFIX(extract_number_and_incr) (&mcnt, &p); p1 = p + mcnt; PREFIX(extract_number_and_incr) (&mcnt2, &p); printf ("/jump_n to %d, %d times", p1 - start, mcnt2); break; case set_number_at: PREFIX(extract_number_and_incr) (&mcnt, &p); p1 = p + mcnt; PREFIX(extract_number_and_incr) (&mcnt2, &p); # ifdef _LIBC printf ("/set_number_at location %td to %d", p1 - start, mcnt2); # else printf ("/set_number_at location %ld to %d", (long int) (p1 - start), mcnt2); # endif break; case wordbound: printf ("/wordbound"); break; case notwordbound: printf ("/notwordbound"); break; case wordbeg: printf ("/wordbeg"); break; case wordend: printf ("/wordend"); break; # ifdef emacs case before_dot: printf ("/before_dot"); break; case at_dot: printf ("/at_dot"); break; case after_dot: printf ("/after_dot"); break; case syntaxspec: printf ("/syntaxspec"); mcnt = *p++; printf ("/%d", mcnt); break; case notsyntaxspec: printf ("/notsyntaxspec"); mcnt = *p++; printf ("/%d", mcnt); break; # endif /* emacs */ case wordchar: printf ("/wordchar"); break; case notwordchar: printf ("/notwordchar"); break; case begbuf: printf ("/begbuf"); break; case endbuf: printf ("/endbuf"); break; default: printf ("?%ld", (long int) *(p-1)); } putchar ('\n'); } # ifdef _LIBC printf ("%td:\tend of pattern.\n", p - start); # else printf ("%ld:\tend of pattern.\n", (long int) (p - start)); # endif } static void PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp) { UCHAR_T *buffer = (UCHAR_T*) bufp->buffer; PREFIX(print_partial_compiled_pattern) (buffer, buffer + bufp->used / sizeof(UCHAR_T)); printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used, bufp->allocated); if (bufp->fastmap_accurate && bufp->fastmap) { printf ("fastmap: "); print_fastmap (bufp->fastmap); } # ifdef _LIBC printf ("re_nsub: %Zd\t", bufp->re_nsub); # else printf ("re_nsub: %ld\t", (long int) bufp->re_nsub); # endif printf ("regs_alloc: %d\t", bufp->regs_allocated); printf ("can_be_null: %d\t", bufp->can_be_null); printf ("newline_anchor: %d\n", bufp->newline_anchor); printf ("no_sub: %d\t", bufp->no_sub); printf ("not_bol: %d\t", bufp->not_bol); printf ("not_eol: %d\t", bufp->not_eol); printf ("syntax: %lx\n", bufp->syntax); /* Perhaps we should print the translate table? */ } static void PREFIX(print_double_string) ( const CHAR_T *where, const CHAR_T *string1, int size1, const CHAR_T *string2, int size2) { int this_char; if (where == NULL) printf ("(null)"); else { int cnt; if (FIRST_STRING_P (where)) { for (this_char = where - string1; this_char < size1; this_char++) PUT_CHAR (string1[this_char]); where = string2; } cnt = 0; for (this_char = where - string2; this_char < size2; this_char++) { PUT_CHAR (string2[this_char]); if (++cnt > 100) { fputs ("...", stdout); break; } } } } # if 0 /* ndef DEFINED_ONCE */ void printchar (int c) { putc (c, stderr); } # endif # else /* not DEBUG */ # ifndef DEFINED_ONCE # undef assert # define assert(e) # define DEBUG_STATEMENT(e) # define DEBUG_PRINT1(x) # define DEBUG_PRINT2(x1, x2) # define DEBUG_PRINT3(x1, x2, x3) # define DEBUG_PRINT4(x1, x2, x3, x4) # endif /* not DEFINED_ONCE */ # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) # endif /* not DEBUG */ # ifdef WCHAR /* This convert a multibyte string to a wide character string. And write their correspondances to offset_buffer(see below) and write whether each wchar_t is binary data to is_binary. This assume invalid multibyte sequences as binary data. We assume offset_buffer and is_binary is already allocated enough space. */ static size_t convert_mbs_to_wcs ( CHAR_T *dest, const unsigned char* src, size_t len, /* the length of multibyte string. */ /* It hold correspondances between src(char string) and dest(wchar_t string) for optimization. e.g. src = "xxxyzz" dest = {'X', 'Y', 'Z'} (each "xxx", "y" and "zz" represent one multibyte character corresponding to 'X', 'Y' and 'Z'.) offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")} = {0, 3, 4, 6} */ int *offset_buffer, char *is_binary) { wchar_t *pdest = dest; const unsigned char *psrc = src; size_t wc_count = 0; mbstate_t mbs; int i, consumed; size_t mb_remain = len; size_t mb_count = 0; /* Initialize the conversion state. */ memset (&mbs, 0, sizeof (mbstate_t)); offset_buffer[0] = 0; for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed, psrc += consumed) { #ifdef _LIBC consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs); #else consumed = mbrtowc (pdest, psrc, mb_remain, &mbs); #endif if (consumed <= 0) /* failed to convert. maybe src contains binary data. So we consume 1 byte manualy. */ { *pdest = *psrc; consumed = 1; is_binary[wc_count] = TRUE; } else is_binary[wc_count] = FALSE; /* In sjis encoding, we use yen sign as escape character in place of reverse solidus. So we convert 0x5c(yen sign in sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse solidus in UCS2). */ if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5) *pdest = (wchar_t) *psrc; offset_buffer[wc_count + 1] = mb_count += consumed; } /* Fill remain of the buffer with sentinel. */ for (i = wc_count + 1 ; i <= len ; i++) offset_buffer[i] = mb_count + 1; return wc_count; } # endif /* WCHAR */ #else /* not INSIDE_RECURSION */ /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can also be assigned to arbitrarily: each pattern buffer stores its own syntax, so it can be changed between regex compilations. */ /* This has no initializer because initialized variables in Emacs become read-only after dumping. */ reg_syntax_t re_syntax_options; /* Specify the precise syntax of regexps for compilation. This provides for compatibility for various utilities which historically have different, incompatible syntaxes. The argument SYNTAX is a bit mask comprised of the various bits defined in regex.h. We return the old syntax. */ reg_syntax_t re_set_syntax (reg_syntax_t syntax) { reg_syntax_t ret = re_syntax_options; re_syntax_options = syntax; # ifdef DEBUG if (syntax & RE_DEBUG) debug = 1; else if (debug) /* was on but now is not */ debug = 0; # endif /* DEBUG */ return ret; } /* This table gives an error message for each of the error codes listed in regex.h. Obviously the order here has to be same as there. POSIX doesn't require that we do anything for REG_NOERROR, but why not be nice? */ static const char re_error_msgid[] = { # define REG_NOERROR_IDX 0 gettext_noop ("Success") /* REG_NOERROR */ "\0" # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") gettext_noop ("No match") /* REG_NOMATCH */ "\0" # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") gettext_noop ("Invalid regular expression") /* REG_BADPAT */ "\0" # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ "\0" # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") gettext_noop ("Invalid character class name") /* REG_ECTYPE */ "\0" # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") gettext_noop ("Trailing backslash") /* REG_EESCAPE */ "\0" # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") gettext_noop ("Invalid back reference") /* REG_ESUBREG */ "\0" # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ "\0" # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ "\0" # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") gettext_noop ("Unmatched \\{") /* REG_EBRACE */ "\0" # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ "\0" # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") gettext_noop ("Invalid range end") /* REG_ERANGE */ "\0" # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") gettext_noop ("Memory exhausted") /* REG_ESPACE */ "\0" # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ "\0" # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") gettext_noop ("Premature end of regular expression") /* REG_EEND */ "\0" # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") gettext_noop ("Regular expression too big") /* REG_ESIZE */ "\0" # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ }; static const uint16_t re_error_msgid_idx[] = { REG_NOERROR_IDX, REG_NOMATCH_IDX, REG_BADPAT_IDX, REG_ECOLLATE_IDX, REG_ECTYPE_IDX, REG_EESCAPE_IDX, REG_ESUBREG_IDX, REG_EBRACK_IDX, REG_EPAREN_IDX, REG_EBRACE_IDX, REG_BADBR_IDX, REG_ERANGE_IDX, REG_ESPACE_IDX, REG_BADRPT_IDX, REG_EEND_IDX, REG_ESIZE_IDX, REG_ERPAREN_IDX }; #endif /* INSIDE_RECURSION */ #ifndef DEFINED_ONCE /* Avoiding alloca during matching, to placate r_alloc. */ /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the searching and matching functions should not call alloca. On some systems, alloca is implemented in terms of malloc, and if we're using the relocating allocator routines, then malloc could cause a relocation, which might (if the strings being searched are in the ralloc heap) shift the data out from underneath the regexp routines. Here's another reason to avoid allocation: Emacs processes input from X in a signal handler; processing X input may call malloc; if input arrives while a matching routine is calling malloc, then we're scrod. But Emacs can't just block input while calling matching routines; then we don't notice interrupts when they come in. So, Emacs blocks input around all regexp calls except the matching calls, which it leaves unprotected, in the faith that they will not malloc. */ /* Normally, this is fine. */ # define MATCH_MAY_ALLOCATE /* When using GNU C, we are not REALLY using the C alloca, no matter what config.h may say. So don't take precautions for it. */ # ifdef __GNUC__ # undef C_ALLOCA # endif /* The match routines may not allocate if (1) they would do it with malloc and (2) it's not safe for them to use malloc. Note that if REL_ALLOC is defined, matching would not use malloc for the failure stack, but we would still use it for the register vectors; so REL_ALLOC should not affect this. */ # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs # undef MATCH_MAY_ALLOCATE # endif #endif /* not DEFINED_ONCE */ #ifdef INSIDE_RECURSION /* Failure stack declarations and macros; both re_compile_fastmap and re_match_2 use a failure stack. These have to be macros because of REGEX_ALLOCATE_STACK. */ /* Number of failure points for which to initially allocate space when matching. If this number is exceeded, we allocate more space, so it is not a hard limit. */ # ifndef INIT_FAILURE_ALLOC # define INIT_FAILURE_ALLOC 5 # endif /* Roughly the maximum number of failure points on the stack. Would be exactly that if always used MAX_FAILURE_ITEMS items each time we failed. This is a variable only so users of regex can assign to it; we never change it ourselves. */ # ifdef INT_IS_16BIT # ifndef DEFINED_ONCE # if defined MATCH_MAY_ALLOCATE /* 4400 was enough to cause a crash on Alpha OSF/1, whose default stack limit is 2mb. */ long int re_max_failures = 4000; # else long int re_max_failures = 2000; # endif # endif union PREFIX(fail_stack_elt) { UCHAR_T *pointer; long int integer; }; typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t); typedef struct { PREFIX(fail_stack_elt_t) *stack; unsigned long int size; unsigned long int avail; /* Offset of next open position. */ } PREFIX(fail_stack_type); # else /* not INT_IS_16BIT */ # ifndef DEFINED_ONCE # if defined MATCH_MAY_ALLOCATE /* 4400 was enough to cause a crash on Alpha OSF/1, whose default stack limit is 2mb. */ int re_max_failures = 4000; # else int re_max_failures = 2000; # endif # endif union PREFIX(fail_stack_elt) { UCHAR_T *pointer; int integer; }; typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t); typedef struct { PREFIX(fail_stack_elt_t) *stack; unsigned size; unsigned avail; /* Offset of next open position. */ } PREFIX(fail_stack_type); # endif /* INT_IS_16BIT */ # ifndef DEFINED_ONCE # define FAIL_STACK_EMPTY() (fail_stack.avail == 0) # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) # endif /* Define macros to initialize and free the failure stack. Do `return -2' if the alloc fails. */ # ifdef MATCH_MAY_ALLOCATE # define INIT_FAIL_STACK() \ do { \ fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \ REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \ \ if (fail_stack.stack == NULL) \ return -2; \ \ fail_stack.size = INIT_FAILURE_ALLOC; \ fail_stack.avail = 0; \ } while (0) # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) # else # define INIT_FAIL_STACK() \ do { \ fail_stack.avail = 0; \ } while (0) # define RESET_FAIL_STACK() # endif /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. Return 1 if succeeds, and 0 if either ran out of memory allocating space for it or it was already too large. REGEX_REALLOCATE_STACK requires `destination' be declared. */ # define DOUBLE_FAIL_STACK(fail_stack) \ ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \ ? 0 \ : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \ REGEX_REALLOCATE_STACK ((fail_stack).stack, \ (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \ ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\ \ (fail_stack).stack == NULL \ ? 0 \ : ((fail_stack).size <<= 1, \ 1))) /* Push pointer POINTER on FAIL_STACK. Return 1 if was able to do so and 0 if ran out of memory allocating space to do so. */ # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ ((FAIL_STACK_FULL () \ && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ ? 0 \ : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ 1)) /* Push a pointer value onto the failure stack. Assumes the variable `fail_stack'. Probably should only be called from within `PUSH_FAILURE_POINT'. */ # define PUSH_FAILURE_POINTER(item) \ fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item) /* This pushes an integer-valued item onto the failure stack. Assumes the variable `fail_stack'. Probably should only be called from within `PUSH_FAILURE_POINT'. */ # define PUSH_FAILURE_INT(item) \ fail_stack.stack[fail_stack.avail++].integer = (item) /* Push a fail_stack_elt_t value onto the failure stack. Assumes the variable `fail_stack'. Probably should only be called from within `PUSH_FAILURE_POINT'. */ # define PUSH_FAILURE_ELT(item) \ fail_stack.stack[fail_stack.avail++] = (item) /* These three POP... operations complement the three PUSH... operations. All assume that `fail_stack' is nonempty. */ # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] /* Used to omit pushing failure point id's when we're not debugging. */ # ifdef DEBUG # define DEBUG_PUSH PUSH_FAILURE_INT # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () # else # define DEBUG_PUSH(item) # define DEBUG_POP(item_addr) # endif /* Push the information about the state we will need if we ever fail back to it. Requires variables fail_stack, regstart, regend, reg_info, and num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination' be declared. Does `return FAILURE_CODE' if runs out of memory. */ # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ do { \ char *destination; \ /* Must be int, so when we don't save any registers, the arithmetic \ of 0 + -1 isn't done as unsigned. */ \ /* Can't be int, since there is not a shred of a guarantee that int \ is wide enough to hold a value of something to which pointer can \ be assigned */ \ active_reg_t this_reg; \ \ DEBUG_STATEMENT (failure_id++); \ DEBUG_STATEMENT (nfailure_points_pushed++); \ DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ \ DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \ DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ \ /* Ensure we have enough space allocated for what we will push. */ \ while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ { \ if (!DOUBLE_FAIL_STACK (fail_stack)) \ return failure_code; \ \ DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ (fail_stack).size); \ DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ } \ \ /* Push the info, starting with the registers. */ \ DEBUG_PRINT1 ("\n"); \ \ if (1) \ for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ this_reg++) \ { \ DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \ DEBUG_STATEMENT (num_regs_pushed++); \ \ DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ PUSH_FAILURE_POINTER (regstart[this_reg]); \ \ DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ PUSH_FAILURE_POINTER (regend[this_reg]); \ \ DEBUG_PRINT2 (" info: %p\n ", \ reg_info[this_reg].word.pointer); \ DEBUG_PRINT2 (" match_null=%d", \ REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ DEBUG_PRINT2 (" matched_something=%d", \ MATCHED_SOMETHING (reg_info[this_reg])); \ DEBUG_PRINT2 (" ever_matched=%d", \ EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ DEBUG_PRINT1 ("\n"); \ PUSH_FAILURE_ELT (reg_info[this_reg].word); \ } \ \ DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\ PUSH_FAILURE_INT (lowest_active_reg); \ \ DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\ PUSH_FAILURE_INT (highest_active_reg); \ \ DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \ DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ PUSH_FAILURE_POINTER (pattern_place); \ \ DEBUG_PRINT2 (" Pushing string %p: `", string_place); \ DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ size2); \ DEBUG_PRINT1 ("'\n"); \ PUSH_FAILURE_POINTER (string_place); \ \ DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ DEBUG_PUSH (failure_id); \ } while (0) # ifndef DEFINED_ONCE /* This is the number of items that are pushed and popped on the stack for each register. */ # define NUM_REG_ITEMS 3 /* Individual items aside from the registers. */ # ifdef DEBUG # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ # else # define NUM_NONREG_ITEMS 4 # endif /* We push at most this many items on the stack. */ /* We used to use (num_regs - 1), which is the number of registers this regexp will save; but that was changed to 5 to avoid stack overflow for a regexp with lots of parens. */ # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) /* We actually push this many items. */ # define NUM_FAILURE_ITEMS \ (((0 \ ? 0 : highest_active_reg - lowest_active_reg + 1) \ * NUM_REG_ITEMS) \ + NUM_NONREG_ITEMS) /* How many items can still be added to the stack without overflowing it. */ # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) # endif /* not DEFINED_ONCE */ /* Pops what PUSH_FAIL_STACK pushes. We restore into the parameters, all of which should be lvalues: STR -- the saved data position. PAT -- the saved pattern position. LOW_REG, HIGH_REG -- the highest and lowest active registers. REGSTART, REGEND -- arrays of string positions. REG_INFO -- array of information about each subexpression. Also assumes the variables `fail_stack' and (if debugging), `bufp', `pend', `string1', `size1', `string2', and `size2'. */ # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ { \ DEBUG_STATEMENT (unsigned failure_id;) \ active_reg_t this_reg; \ const UCHAR_T *string_temp; \ \ assert (!FAIL_STACK_EMPTY ()); \ \ /* Remove failure points and point to how many regs pushed. */ \ DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ \ assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ \ DEBUG_POP (&failure_id); \ DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ \ /* If the saved string location is NULL, it came from an \ on_failure_keep_string_jump opcode, and we want to throw away the \ saved NULL, thus retaining our current position in the string. */ \ string_temp = POP_FAILURE_POINTER (); \ if (string_temp != NULL) \ str = (const CHAR_T *) string_temp; \ \ DEBUG_PRINT2 (" Popping string %p: `", str); \ DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ DEBUG_PRINT1 ("'\n"); \ \ pat = (UCHAR_T *) POP_FAILURE_POINTER (); \ DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \ DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ \ /* Restore register info. */ \ high_reg = (active_reg_t) POP_FAILURE_INT (); \ DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \ \ low_reg = (active_reg_t) POP_FAILURE_INT (); \ DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \ \ if (1) \ for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ { \ DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \ \ reg_info[this_reg].word = POP_FAILURE_ELT (); \ DEBUG_PRINT2 (" info: %p\n", \ reg_info[this_reg].word.pointer); \ \ regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \ DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ \ regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \ DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ } \ else \ { \ for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ { \ reg_info[this_reg].word.integer = 0; \ regend[this_reg] = 0; \ regstart[this_reg] = 0; \ } \ highest_active_reg = high_reg; \ } \ \ set_regs_matched_done = 0; \ DEBUG_STATEMENT (nfailure_points_popped++); \ } /* POP_FAILURE_POINT */ /* Structure for per-register (a.k.a. per-group) information. Other register information, such as the starting and ending positions (which are addresses), and the list of inner groups (which is a bits list) are maintained in separate variables. We are making a (strictly speaking) nonportable assumption here: that the compiler will pack our bit fields into something that fits into the type of `word', i.e., is something that fits into one item on the failure stack. */ /* Declarations and macros for re_match_2. */ typedef union { PREFIX(fail_stack_elt_t) word; struct { /* This field is one if this group can match the empty string, zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ # define MATCH_NULL_UNSET_VALUE 3 unsigned match_null_string_p : 2; unsigned is_active : 1; unsigned matched_something : 1; unsigned ever_matched_something : 1; } bits; } PREFIX(register_info_type); # ifndef DEFINED_ONCE # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) # define IS_ACTIVE(R) ((R).bits.is_active) # define MATCHED_SOMETHING(R) ((R).bits.matched_something) # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) /* Call this when have matched a real character; it sets `matched' flags for the subexpressions which we are currently inside. Also records that those subexprs have matched. */ # define SET_REGS_MATCHED() \ do \ { \ if (!set_regs_matched_done) \ { \ active_reg_t r; \ set_regs_matched_done = 1; \ for (r = lowest_active_reg; r <= highest_active_reg; r++) \ { \ MATCHED_SOMETHING (reg_info[r]) \ = EVER_MATCHED_SOMETHING (reg_info[r]) \ = 1; \ } \ } \ } \ while (0) # endif /* not DEFINED_ONCE */ /* Registers are set to a sentinel when they haven't yet matched. */ static CHAR_T PREFIX(reg_unset_dummy); # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy)) # define REG_UNSET(e) ((e) == REG_UNSET_VALUE) /* Subroutine declarations and macros for regex_compile. */ static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg); static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2); static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end); static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2, UCHAR_T *end); static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p, reg_syntax_t syntax); static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend, reg_syntax_t syntax); # ifdef WCHAR static reg_errcode_t wcs_compile_range (CHAR_T range_start, const CHAR_T **p_ptr, const CHAR_T *pend, __RE_TRANSLATE_TYPE translate, reg_syntax_t syntax, UCHAR_T *b, CHAR_T *char_set); static void insert_space (int num, CHAR_T *loc, CHAR_T *end); # else /* BYTE */ static reg_errcode_t byte_compile_range (unsigned int range_start, const char **p_ptr, const char *pend, __RE_TRANSLATE_TYPE translate, reg_syntax_t syntax, unsigned char *b); # endif /* WCHAR */ /* Fetch the next character in the uncompiled pattern---translating it if necessary. Also cast from a signed character in the constant string passed to us by the user to an unsigned char that we can use as an array index (in, e.g., `translate'). */ /* ifdef MBS_SUPPORT, we translate only if character <= 0xff, because it is impossible to allocate 4GB array for some encodings which have 4 byte character_set like UCS4. */ # ifndef PATFETCH # ifdef WCHAR # define PATFETCH(c) \ do {if (p == pend) return REG_EEND; \ c = (UCHAR_T) *p++; \ if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \ } while (0) # else /* BYTE */ # define PATFETCH(c) \ do {if (p == pend) return REG_EEND; \ c = (unsigned char) *p++; \ if (translate) c = (unsigned char) translate[c]; \ } while (0) # endif /* WCHAR */ # endif /* Fetch the next character in the uncompiled pattern, with no translation. */ # define PATFETCH_RAW(c) \ do {if (p == pend) return REG_EEND; \ c = (UCHAR_T) *p++; \ } while (0) /* Go backwards one character in the pattern. */ # define PATUNFETCH p-- /* If `translate' is non-null, return translate[D], else just D. We cast the subscript to translate because some data is declared as `char *', to avoid warnings when a string constant is passed. But when we use a character as a subscript we must make it unsigned. */ /* ifdef MBS_SUPPORT, we translate only if character <= 0xff, because it is impossible to allocate 4GB array for some encodings which have 4 byte character_set like UCS4. */ # ifndef TRANSLATE # ifdef WCHAR # define TRANSLATE(d) \ ((translate && ((UCHAR_T) (d)) <= 0xff) \ ? (char) translate[(unsigned char) (d)] : (d)) # else /* BYTE */ # define TRANSLATE(d) \ (translate ? (char) translate[(unsigned char) (d)] : (d)) # endif /* WCHAR */ # endif /* Macros for outputting the compiled pattern into `buffer'. */ /* If the buffer isn't allocated when it comes in, use this. */ # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T)) /* Make sure we have at least N more bytes of space in buffer. */ # ifdef WCHAR # define GET_BUFFER_SPACE(n) \ while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \ + (n)*sizeof(CHAR_T)) > bufp->allocated) \ EXTEND_BUFFER () # else /* BYTE */ # define GET_BUFFER_SPACE(n) \ while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \ EXTEND_BUFFER () # endif /* WCHAR */ /* Make sure we have one more byte of buffer space and then add C to it. */ # define BUF_PUSH(c) \ do { \ GET_BUFFER_SPACE (1); \ *b++ = (UCHAR_T) (c); \ } while (0) /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ # define BUF_PUSH_2(c1, c2) \ do { \ GET_BUFFER_SPACE (2); \ *b++ = (UCHAR_T) (c1); \ *b++ = (UCHAR_T) (c2); \ } while (0) /* As with BUF_PUSH_2, except for three bytes. */ # define BUF_PUSH_3(c1, c2, c3) \ do { \ GET_BUFFER_SPACE (3); \ *b++ = (UCHAR_T) (c1); \ *b++ = (UCHAR_T) (c2); \ *b++ = (UCHAR_T) (c3); \ } while (0) /* Store a jump with opcode OP at LOC to location TO. We store a relative address offset by the three bytes the jump itself occupies. */ # define STORE_JUMP(op, loc, to) \ PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE))) /* Likewise, for a two-argument jump. */ # define STORE_JUMP2(op, loc, to, arg) \ PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg) /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ # define INSERT_JUMP(op, loc, to) \ PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b) /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ # define INSERT_JUMP2(op, loc, to, arg) \ PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\ arg, b) /* This is not an arbitrary limit: the arguments which represent offsets into the pattern are two bytes long. So if 2^16 bytes turns out to be too small, many things would have to change. */ /* Any other compiler which, like MSC, has allocation limit below 2^16 bytes will have to use approach similar to what was done below for MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up reallocating to 0 bytes. Such thing is not going to work too well. You have been warned!! */ # ifndef DEFINED_ONCE # if defined _MSC_VER && !defined WIN32 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. The REALLOC define eliminates a flurry of conversion warnings, but is not required. */ # define MAX_BUF_SIZE 65500L # define REALLOC(p,s) realloc ((p), (size_t) (s)) # else # define MAX_BUF_SIZE (1L << 16) # define REALLOC(p,s) realloc ((p), (s)) # endif # endif /* not DEFINED_ONCE */ /* Extend the buffer by twice its current size via realloc and reset the pointers that pointed into the old block to point to the correct places in the new one. If extending the buffer results in it being larger than MAX_BUF_SIZE, then flag memory exhausted. */ # ifdef WCHAR # define EXTEND_BUFFER() \ do { \ UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \ int wchar_count; \ if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \ return REG_ESIZE; \ bufp->allocated <<= 1; \ if (bufp->allocated > MAX_BUF_SIZE) \ bufp->allocated = MAX_BUF_SIZE; \ /* How many characters the new buffer can have? */ \ wchar_count = bufp->allocated / sizeof(UCHAR_T); \ if (wchar_count == 0) wchar_count = 1; \ /* Truncate the buffer to CHAR_T align. */ \ bufp->allocated = wchar_count * sizeof(UCHAR_T); \ RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \ bufp->buffer = (char*)COMPILED_BUFFER_VAR; \ if (COMPILED_BUFFER_VAR == NULL) \ return REG_ESPACE; \ /* If the buffer moved, move all the pointers into it. */ \ if (old_buffer != COMPILED_BUFFER_VAR) \ { \ int incr = COMPILED_BUFFER_VAR - old_buffer; \ b += incr; \ begalt += incr; \ if (fixup_alt_jump) \ fixup_alt_jump += incr; \ if (laststart) \ laststart += incr; \ if (pending_exact) \ pending_exact += incr; \ } \ } while (0) # else /* BYTE */ # define EXTEND_BUFFER() \ do { \ UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \ if (bufp->allocated == MAX_BUF_SIZE) \ return REG_ESIZE; \ bufp->allocated <<= 1; \ if (bufp->allocated > MAX_BUF_SIZE) \ bufp->allocated = MAX_BUF_SIZE; \ bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \ bufp->allocated); \