/* * libdl.c * * Functions required for dlopen et. al. */ #include <ldso.h> /* The public interfaces */ void *dlopen(const char *, int) __attribute__ ((__weak__, __alias__ ("_dlopen"))); int dlclose(void *) __attribute__ ((__weak__, __alias__ ("_dlclose"))); void *dlsym(void *, const char *) __attribute__ ((__weak__, __alias__ ("_dlsym"))); const char *dlerror(void) __attribute__ ((__weak__, __alias__ ("_dlerror"))); int dladdr(void *, Dl_info *) __attribute__ ((__weak__, __alias__ ("_dladdr"))); void _dlinfo(void); #ifdef __PIC__ /* This is a real hack. We need access to the dynamic linker, but we also need to make it possible to link against this library without any unresolved externals. We provide these weak symbols to make the link possible, but at run time the normal symbols are accessed. */ static void __attribute__ ((unused)) foobar(void) { const char msg[]="libdl library not correctly linked\n"; _dl_write(2, msg, _dl_strlen(msg)); _dl_exit(1); } static int __attribute__ ((unused)) foobar1 = (int) foobar; /* Use as pointer */ extern void _dl_dprintf(int, const char *, ...) __attribute__ ((__weak__, __alias__ ("foobar"))); extern char *_dl_find_hash(const char *, struct dyn_elf *, struct elf_resolve *, enum caller_type) __attribute__ ((__weak__, __alias__ ("foobar"))); extern struct elf_resolve * _dl_load_shared_library(int, struct dyn_elf **, struct elf_resolve *, char *) __attribute__ ((__weak__, __alias__ ("foobar"))); extern struct elf_resolve * _dl_check_if_named_library_is_loaded(const char *full_libname) __attribute__ ((__weak__, __alias__ ("foobar"))); extern int _dl_fixup(struct elf_resolve *tpnt, int lazy) __attribute__ ((__weak__, __alias__ ("foobar"))); extern int _dl_copy_fixups(struct dyn_elf * tpnt) __attribute__ ((__weak__, __alias__ ("foobar"))); #ifdef __mips__ extern void _dl_perform_mips_global_got_relocations(struct elf_resolve *tpnt) __attribute__ ((__weak__, __alias__ ("foobar"))); #endif #ifdef USE_CACHE int _dl_map_cache(void) __attribute__ ((__weak__, __alias__ ("foobar"))); int _dl_unmap_cache(void) __attribute__ ((__weak__, __alias__ ("foobar"))); #endif extern struct dyn_elf *_dl_symbol_tables __attribute__ ((__weak__, __alias__ ("foobar1"))); extern struct dyn_elf *_dl_handles __attribute__ ((__weak__, __alias__ ("foobar1"))); extern struct elf_resolve *_dl_loaded_modules __attribute__ ((__weak__, __alias__ ("foobar1"))); extern struct r_debug *_dl_debug_addr __attribute__ ((__weak__, __alias__ ("foobar1"))); extern unsigned long _dl_error_number __attribute__ ((__weak__, __alias__ ("foobar1"))); extern void *(*_dl_malloc_function)(size_t) __attribute__ ((__weak__, __alias__ ("foobar1"))); #ifdef __SUPPORT_LD_DEBUG__ extern char *_dl_debug __attribute__ ((__weak__, __alias__ ("foobar1"))); extern char *_dl_debug_symbols __attribute__ ((__weak__, __alias__ ("foobar1"))); extern char *_dl_debug_move __attribute__ ((__weak__, __alias__ ("foobar1"))); extern char *_dl_debug_reloc __attribute__ ((__weak__, __alias__ ("foobar1"))); extern char *_dl_debug_detail __attribute__ ((__weak__, __alias__ ("foobar1"))); extern char *_dl_debug_nofixups __attribute__ ((__weak__, __alias__ ("foobar1"))); extern char *_dl_debug_bindings __attribute__ ((__weak__, __alias__ ("foobar1"))); extern int _dl_debug_file __attribute__ ((__weak__, __alias__ ("foobar1"))); #endif #else /* __PIC__ */ #ifdef __SUPPORT_LD_DEBUG__ char *_dl_debug = 0; char *_dl_debug_symbols = 0; char *_dl_debug_move = 0; char *_dl_debug_reloc = 0; char *_dl_debug_detail = 0; char *_dl_debug_nofixups = 0; char *_dl_debug_bindings = 0; int _dl_debug_file = 2; #endif char *_dl_library_path = 0; char *_dl_ldsopath = 0; struct r_debug *_dl_debug_addr = NULL; static char *_dl_malloc_addr, *_dl_mmap_zero; #include "../ldso/_dl_progname.h" /* Pull in the name of ld.so */ #include "../ldso/hash.c" #define _dl_trace_loaded_objects 0 #include "../ldso/readelflib1.c" void *(*_dl_malloc_function) (size_t size); int _dl_fixup(struct elf_resolve *tpnt, int lazy); #endif static int do_dlclose(void *, int need_fini); static const char *dl_error_names[] = { "", "File not found", "Unable to open /dev/zero", "Not an ELF file", #if defined (__i386__) "Not i386 binary", #elif defined (__sparc__) "Not sparc binary", #elif defined (__mc68000__) "Not m68k binary", #else "Unrecognized binary type", #endif "Not an ELF shared library", "Unable to mmap file", "No dynamic section", #ifdef ELF_USES_RELOCA "Unable to process REL relocs", #else "Unable to process RELA relocs", #endif "Bad handle", "Unable to resolve symbol" }; static void __attribute__ ((destructor)) dl_cleanup(void) { struct dyn_elf *d; for (d = _dl_handles; d; d = d->next_handle) if (d->dyn->libtype == loaded_file && d->dyn->dynamic_info[DT_FINI]) { (* ((int (*)(void)) (d->dyn->loadaddr + d->dyn->dynamic_info[DT_FINI]))) (); d->dyn->dynamic_info[DT_FINI] = 0; } } void *_dlopen(const char *libname, int flag) { struct elf_resolve *tpnt, *tfrom, *tcurr; struct dyn_elf *dyn_chain, *rpnt = NULL; struct dyn_elf *dpnt; static int dl_init = 0; ElfW(Addr) from; struct elf_resolve *tpnt1; void (*dl_brk) (void); /* A bit of sanity checking... */ if (!(flag & (RTLD_LAZY|RTLD_NOW))) { _dl_error_number = LD_BAD_HANDLE; return NULL; } from = (ElfW(Addr)) __builtin_return_address(0); /* Have the dynamic linker use the regular malloc function now */ if (!dl_init) { dl_init++; _dl_malloc_function = malloc; } /* Cover the trivial case first */ if (!libname) return _dl_symbol_tables; _dl_map_cache(); /* * Try and locate the module we were called from - we * need this so that we get the correct RPATH. Note that * this is the current behavior under Solaris, but the * ABI+ specifies that we should only use the RPATH from * the application. Thus this may go away at some time * in the future. */ tfrom = NULL; for (dpnt = _dl_symbol_tables; dpnt; dpnt = dpnt->next) { tpnt = dpnt->dyn; if (tpnt->loadaddr < from && (tfrom == NULL || tfrom->loadaddr < tpnt->loadaddr)) tfrom = tpnt; } /* Try to load the specified library */ #ifdef __SUPPORT_LD_DEBUG__ if(_dl_debug) _dl_dprintf(_dl_debug_file, "Trying to dlopen '%s'\n", (char*)libname); #endif tpnt = _dl_load_shared_library(0, &rpnt, tfrom, (char*)libname); if (tpnt == NULL) { _dl_unmap_cache(); return NULL; } dyn_chain = (struct dyn_elf *) malloc(sizeof(struct dyn_elf)); _dl_memset(dyn_chain, 0, sizeof(struct dyn_elf)); dyn_chain->dyn = tpnt; dyn_chain->flags = flag; if (!tpnt->symbol_scope) tpnt->symbol_scope = dyn_chain; dyn_chain->next_handle = _dl_handles; _dl_handles = rpnt = dyn_chain; if (tpnt->init_flag & INIT_FUNCS_CALLED) { /* If the init and fini stuff has already been run, that means * the dlopen'd library has already been loaded, and nothing * further needs to be done. */ return (void *) dyn_chain; } #ifdef __SUPPORT_LD_DEBUG__ if(_dl_debug) _dl_dprintf(_dl_debug_file, "Looking for needed libraries\n"); #endif for (tcurr = tpnt; tcurr; tcurr = tcurr->next) { Elf32_Dyn *dpnt; char *lpntstr; for (dpnt = (Elf32_Dyn *) tcurr->dynamic_addr; dpnt->d_tag; dpnt++) { if (dpnt->d_tag == DT_NEEDED) { char *name; lpntstr = (char*) (tcurr->loadaddr + tcurr->dynamic_info[DT_STRTAB] + dpnt->d_un.d_val); name = _dl_get_last_path_component(lpntstr); #ifdef __SUPPORT_LD_DEBUG__ if(_dl_debug) _dl_dprintf(_dl_debug_file, "Trying to load '%s', needed by '%s'\n", lpntstr, tcurr->libname); #endif if (!(tpnt1 = _dl_load_shared_library(0, &rpnt, tcurr, lpntstr))) { goto oops; } #if 1 //FIXME: Enabling this is _so_ wrong.... /* We need global symbol resolution for everything * in the dependent chain */ dyn_chain->flags |= RTLD_GLOBAL; #endif rpnt->next = (struct dyn_elf *) malloc(sizeof(struct dyn_elf)); _dl_memset (rpnt->next, 0, sizeof (struct dyn_elf)); rpnt = rpnt->next; if (!tpnt1->symbol_scope) tpnt1->symbol_scope = rpnt; rpnt->dyn = tpnt1; } } } /* * OK, now attach the entire chain at the end */ rpnt->next = _dl_symbol_tables; #ifdef __mips__ /* * Relocation of the GOT entries for MIPS have to be done * after all the libraries have been loaded. */ _dl_perform_mips_global_got_relocations(tpnt); #endif #ifdef __SUPPORT_LD_DEBUG__ if(_dl_debug) _dl_dprintf(_dl_debug_file, "Beginning dlopen relocation fixups\n"); #endif /* * OK, now all of the kids are tucked into bed in their proper addresses. * Now we go through and look for REL and RELA records that indicate fixups * to the GOT tables. We need to do this in reverse order so that COPY * directives work correctly */ if (_dl_fixup(dyn_chain->dyn, dyn_chain->flags)) goto oops; #ifdef __SUPPORT_LD_DEBUG__ if(_dl_debug) _dl_dprintf(_dl_debug_file, "Beginning dlopen copy fixups\n"); #endif if (_dl_symbol_tables) { if (_dl_copy_fixups(dyn_chain)) goto oops; } /* TODO: Should we set the protections of all pages back to R/O now ? */ /* Notify the debugger we have added some objects. */ _dl_debug_addr->r_state = RT_ADD; if (_dl_debug_addr) { dl_brk = (void (*)(void)) _dl_debug_addr->r_brk; if (dl_brk != NULL) { _dl_debug_addr->r_state = RT_ADD; (*dl_brk) (); _dl_debug_addr->r_state = RT_CONSISTENT; (*dl_brk) (); } } #if 0 //def __SUPPORT_LD_DEBUG__ if(_dl_debug) _dlinfo(); #endif #ifdef __PIC__ /* Find the last library so we can run things in the right order */ for (tpnt = dyn_chain->dyn; tpnt->next!=NULL; tpnt = tpnt->next) ; /* Run the ctors and set up the dtors */ for (; tpnt != dyn_chain->dyn->prev; tpnt=tpnt->prev) { /* Apparently crt1 for the application is responsible for handling this. * We only need to run the init/fini for shared libraries */ if (tpnt->libtype == program_interpreter) continue; if (tpnt->libtype == elf_executable) continue; if (tpnt->init_flag & INIT_FUNCS_CALLED) continue; tpnt->init_flag |= INIT_FUNCS_CALLED; if (tpnt->dynamic_info[DT_INIT]) { void (*dl_elf_func) (void); dl_elf_func = (void (*)(void)) (tpnt->loadaddr + tpnt->dynamic_info[DT_INIT]); if (dl_elf_func && *dl_elf_func != NULL) { #ifdef __SUPPORT_LD_DEBUG__ if(_dl_debug) _dl_dprintf(2, "running ctors for library %s at '%x'\n", tpnt->libname, dl_elf_func); #endif (*dl_elf_func) (); } } if (tpnt->dynamic_info[DT_FINI]) { void (*dl_elf_func) (void); dl_elf_func = (void (*)(void)) (tpnt->loadaddr + tpnt->dynamic_info[DT_FINI]); if (dl_elf_func && *dl_elf_func != NULL) { #ifdef __SUPPORT_LD_DEBUG__ if(_dl_debug) _dl_dprintf(2, "setting up dtors for library %s at '%x'\n", tpnt->libname, dl_elf_func); #endif atexit(dl_elf_func); } } } #endif return (void *) dyn_chain; oops: /* Something went wrong. Clean up and return NULL. */ _dl_unmap_cache(); do_dlclose(dyn_chain, 0); return NULL; } void *_dlsym(void *vhandle, const char *name) { struct elf_resolve *tpnt, *tfrom; struct dyn_elf *handle; ElfW(Addr) from; struct dyn_elf *rpnt; void *ret; handle = (struct dyn_elf *) vhandle; /* First of all verify that we have a real handle of some kind. Return NULL if not a valid handle. */ if (handle == NULL) handle = _dl_symbol_tables; else if (handle != RTLD_NEXT && handle != _dl_symbol_tables) { for (rpnt = _dl_handles; rpnt; rpnt = rpnt->next_handle) if (rpnt == handle) break; if (!rpnt) { _dl_error_number = LD_BAD_HANDLE; return NULL; } } else if (handle == RTLD_NEXT) { /* * Try and locate the module we were called from - we * need this so that we know where to start searching * from. We never pass RTLD_NEXT down into the actual * dynamic loader itself, as it doesn't know * how to properly treat it. */ from = (ElfW(Addr)) __builtin_return_address(0); tfrom = NULL; for (rpnt = _dl_symbol_tables; rpnt; rpnt = rpnt->next) { tpnt = rpnt->dyn; if (tpnt->loadaddr < from && (tfrom == NULL || tfrom->loadaddr < tpnt->loadaddr)) { tfrom = tpnt; handle = rpnt->next; } } } ret = _dl_find_hash((char*)name, handle, NULL, copyrel); /* * Nothing found. */ if (!ret) _dl_error_number = LD_NO_SYMBOL; return ret; } int _dlclose(void *vhandle) { return do_dlclose(vhandle, 1); } static int do_dlclose(void *vhandle, int need_fini) { struct dyn_elf *rpnt, *rpnt1; struct dyn_elf *spnt, *spnt1; ElfW(Phdr) *ppnt; struct elf_resolve *tpnt; int (*dl_elf_fini) (void); void (*dl_brk) (void); struct dyn_elf *handle; unsigned int end; int i = 0; handle = (struct dyn_elf *) vhandle; rpnt1 = NULL; for (rpnt = _dl_handles; rpnt; rpnt = rpnt->next_handle) { if (rpnt == handle) { break; } rpnt1 = rpnt; } if (!rpnt) { _dl_error_number = LD_BAD_HANDLE; return 1; } /* OK, this is a valid handle - now close out the file. * We check if we need to call fini () on the handle. */ spnt = need_fini ? handle : handle->next; for (; spnt; spnt = spnt1) { spnt1 = spnt->next; /* We appended the module list to the end - when we get back here, quit. The access counts were not adjusted to account for being here. */ if (spnt == _dl_symbol_tables) break; if (spnt->dyn->usage_count == 1 && spnt->dyn->libtype == loaded_file) { tpnt = spnt->dyn; /* Apparently crt1 for the application is responsible for handling this. * We only need to run the init/fini for shared libraries */ if (tpnt->dynamic_info[DT_FINI]) { dl_elf_fini = (int (*)(void)) (tpnt->loadaddr + tpnt->dynamic_info[DT_FINI]); (*dl_elf_fini) (); } } } if (rpnt1) rpnt1->next_handle = rpnt->next_handle; else _dl_handles = rpnt->next_handle; /* OK, this is a valid handle - now close out the file */ for (rpnt = handle; rpnt; rpnt = rpnt1) { rpnt1 = rpnt->next; /* We appended the module list to the end - when we get back here, quit. The access counts were not adjusted to account for being here. */ if (rpnt == _dl_symbol_tables) break; rpnt->dyn->usage_count--; if (rpnt->dyn->usage_count == 0 && rpnt->dyn->libtype == loaded_file) { tpnt = rpnt->dyn; /* Apparently crt1 for the application is responsible for handling this. * We only need to run the init/fini for shared libraries */ #if 0 /* We have to do this above, before we start closing objects. * Otherwise when the needed symbols for _fini handling are * resolved a coredump would occur. Rob Ryan (robr@cmu.edu)*/ if (tpnt->dynamic_info[DT_FINI]) { dl_elf_fini = (int (*)(void)) (tpnt->loadaddr + tpnt->dynamic_info[DT_FINI]); (*dl_elf_fini) (); } #endif end = 0; for (i = 0, ppnt = rpnt->dyn->ppnt; i < rpnt->dyn->n_phent; ppnt++, i++) { if (ppnt->p_type != PT_LOAD) continue; if (end < ppnt->p_vaddr + ppnt->p_memsz) end = ppnt->p_vaddr + ppnt->p_memsz; } _dl_munmap((void*)rpnt->dyn->loadaddr, end); /* Next, remove rpnt->dyn from the loaded_module list */ if (_dl_loaded_modules == rpnt->dyn) { _dl_loaded_modules = rpnt->dyn->next; if (_dl_loaded_modules) _dl_loaded_modules->prev = 0; } else for (tpnt = _dl_loaded_modules; tpnt; tpnt = tpnt->next) if (tpnt->next == rpnt->dyn) { tpnt->next = tpnt->next->next; if (tpnt->next) tpnt->next->prev = tpnt; break; } free(rpnt->dyn->libname); free(rpnt->dyn); } free(rpnt); } if (_dl_debug_addr) { dl_brk = (void (*)(void)) _dl_debug_addr->r_brk; if (dl_brk != NULL) { _dl_debug_addr->r_state = RT_DELETE; (*dl_brk) (); _dl_debug_addr->r_state = RT_CONSISTENT; (*dl_brk) (); } } return 0; } const char *_dlerror(void) { const char *retval; if (!_dl_error_number) return NULL; retval = dl_error_names[_dl_error_number]; _dl_error_number = 0; return retval; } /* * Dump information to stderrr about the current loaded modules */ static char *type[] = { "Lib", "Exe", "Int", "Mod" }; void _dlinfo(void) { struct elf_resolve *tpnt; struct dyn_elf *rpnt, *hpnt; _dl_dprintf(2, "List of loaded modules\n"); /* First start with a complete list of all of the loaded files. */ for (tpnt = _dl_loaded_modules; tpnt; tpnt = tpnt->next) { _dl_dprintf(2, "\t%x %x %x %s %d %s\n", (unsigned) tpnt->loadaddr, (unsigned) tpnt, (unsigned) tpnt->symbol_scope, type[tpnt->libtype], tpnt->usage_count, tpnt->libname); } /* Next dump the module list for the application itself */ _dl_dprintf(2, "\nModules for application (%x):\n", (unsigned) _dl_symbol_tables); for (rpnt = _dl_symbol_tables; rpnt; rpnt = rpnt->next) _dl_dprintf(2, "\t%x %s\n", (unsigned) rpnt->dyn, rpnt->dyn->libname); for (hpnt = _dl_handles; hpnt; hpnt = hpnt->next_handle) { _dl_dprintf(2, "Modules for handle %x\n", (unsigned) hpnt); for (rpnt = hpnt; rpnt; rpnt = rpnt->next) _dl_dprintf(2, "\t%x %s\n", (unsigned) rpnt->dyn, rpnt->dyn->libname); } } int _dladdr(void *__address, Dl_info * __dlip) { struct elf_resolve *pelf; struct elf_resolve *rpnt; _dl_map_cache(); /* * Try and locate the module address is in */ pelf = NULL; #if 0 _dl_dprintf(2, "dladdr( %x, %x )\n", __address, __dlip); #endif for (rpnt = _dl_loaded_modules; rpnt; rpnt = rpnt->next) { struct elf_resolve *tpnt; tpnt = rpnt; #if 0 _dl_dprintf(2, "Module \"%s\" at %x\n", tpnt->libname, tpnt->loadaddr); #endif if (tpnt->loadaddr < (ElfW(Addr)) __address && (pelf == NULL || pelf->loadaddr < tpnt->loadaddr)) { pelf = tpnt; } } if (!pelf) { return 0; } /* * Try and locate the symbol of address */ { char *strtab; Elf32_Sym *symtab; int hn, si; int sf; int sn = 0; ElfW(Addr) sa; sa = 0; symtab = (Elf32_Sym *) (pelf->dynamic_info[DT_SYMTAB] + pelf->loadaddr); strtab = (char *) (pelf->dynamic_info[DT_STRTAB] + pelf->loadaddr); sf = 0; for (hn = 0; hn < pelf->nbucket; hn++) { for (si = pelf->elf_buckets[hn]; si; si = pelf->chains[si]) { ElfW(Addr) symbol_addr; symbol_addr = pelf->loadaddr + symtab[si].st_value; if (symbol_addr <= (ElfW(Addr))__address && (!sf || sa < symbol_addr)) { sa = symbol_addr; sn = si; sf = 1; } #if 0 _dl_dprintf(2, "Symbol \"%s\" at %x\n", strtab + symtab[si].st_name, symbol_addr); #endif } } if (sf) { __dlip->dli_fname = pelf->libname; __dlip->dli_fbase = (void *)pelf->loadaddr; __dlip->dli_sname = strtab + symtab[sn].st_name; __dlip->dli_saddr = (void *)sa; } return 1; } }