/* RISCV ELF shared library loader suppport * * Copyright (C) 2001-2004 Erik Andersen * Copyright (C) 2019 Waldemar Brodkorb * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. The name of the above contributors may not be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Program to load an ELF binary on a linux system, and run it. References to symbols in sharable libraries can be resolved by either an ELF sharable library or a linux style of shared library. */ #include "ldso.h" extern int _dl_linux_resolve(void); unsigned long _dl_linux_resolver(struct elf_resolve *tpnt, int reloc_entry) { ELF_RELOC *this_reloc; char *strtab; ElfW(Sym) *symtab; int symtab_index; char *rel_addr; char *new_addr; char **got_addr; ElfW(Addr) instr_addr; char *symname; rel_addr = (char *)tpnt->dynamic_info[DT_JMPREL]; this_reloc = (ELF_RELOC *)(rel_addr + reloc_entry); symtab_index = ELF_R_SYM(this_reloc->r_info); symtab = (ElfW(Sym) *)tpnt->dynamic_info[DT_SYMTAB]; strtab = (char *)tpnt->dynamic_info[DT_STRTAB]; symname = strtab + symtab[symtab_index].st_name; /* Address of jump instruction to fix up */ instr_addr = (this_reloc->r_offset + tpnt->loadaddr); got_addr = (char **)instr_addr; /* Get the address of the GOT entry */ new_addr = _dl_find_hash(symname, &_dl_loaded_modules->symbol_scope, tpnt, ELF_RTYPE_CLASS_PLT, NULL); if (unlikely(!new_addr)) { _dl_dprintf(2, "%s: can't resolve symbol '%s'\n", _dl_progname, symname); _dl_exit(1); } #if defined (__SUPPORT_LD_DEBUG__) if (_dl_debug_bindings) { _dl_dprintf(_dl_debug_file, "\nresolve function: %s", symname); if (_dl_debug_detail) _dl_dprintf(_dl_debug_file, "\tpatched %x ==> %x @ %x", *got_addr, new_addr, got_addr); } if (!_dl_debug_nofixups) { *got_addr = new_addr; } #else *got_addr = new_addr; #endif return (unsigned long)new_addr; } static int _dl_parse(struct elf_resolve *tpnt, struct r_scope_elem *scope, unsigned long rel_addr, unsigned long rel_size, int (*reloc_fnc) (struct elf_resolve *tpnt, struct r_scope_elem *scope, ELF_RELOC *rpnt, ElfW(Sym) *symtab, char *strtab)) { unsigned int i; char *strtab; ElfW(Sym) *symtab; ELF_RELOC *rpnt; int symtab_index; /* Parse the relocation information */ rpnt = (ELF_RELOC *)rel_addr; rel_size = rel_size / sizeof(ELF_RELOC); symtab = (ElfW(Sym) *)tpnt->dynamic_info[DT_SYMTAB]; strtab = (char *)tpnt->dynamic_info[DT_STRTAB]; for (i = 0; i < rel_size; i++, rpnt++) { int res; symtab_index = ELF_R_SYM(rpnt->r_info); debug_sym(symtab, strtab, symtab_index); debug_reloc(symtab, strtab, rpnt); res = reloc_fnc(tpnt, scope, rpnt, symtab, strtab); if (res==0) continue; _dl_dprintf(2, "\n%s: ", _dl_progname); if (symtab_index) _dl_dprintf(2, "symbol '%s': ", strtab + symtab[symtab_index].st_name); if (unlikely(res < 0)) { int reloc_type = ELF_R_TYPE(rpnt->r_info); _dl_dprintf(2, "can't handle reloc type %x\n", reloc_type); _dl_exit(-res); } else if (unlikely(res > 0)) { _dl_dprintf(2, "can't resolve symbol\n"); return res; } } return 0; } static int _dl_do_reloc (struct elf_resolve *tpnt, struct r_scope_elem *scope, ELF_RELOC *rpnt, ElfW(Sym) *symtab, char *strtab) { int reloc_type; int symtab_index; char *symname; #if defined USE_TLS && USE_TLS struct elf_resolve *tls_tpnt = NULL; #endif struct symbol_ref sym_ref; ElfW(Addr) *reloc_addr; ElfW(Addr) symbol_addr; #if defined (__SUPPORT_LD_DEBUG__) ElfW(Addr) old_val; #endif reloc_addr = (ElfW(Addr)*)(tpnt->loadaddr + (unsigned long)rpnt->r_offset); reloc_type = ELF_R_TYPE(rpnt->r_info); symtab_index = ELF_R_SYM(rpnt->r_info); sym_ref.sym = &symtab[symtab_index]; sym_ref.tpnt = NULL; symbol_addr = 0; symname = strtab + sym_ref.sym->st_name; if (symtab_index) { symbol_addr = (ElfW(Addr))_dl_find_hash(symname, scope, tpnt, elf_machine_type_class(reloc_type), &sym_ref); /* * We want to allow undefined references to weak symbols - this might * have been intentional. We should not be linking local symbols * here, so all bases should be covered. */ if (unlikely (!symbol_addr && (ELF_ST_TYPE(symtab[symtab_index].st_info) != STT_TLS) && (ELF_ST_BIND(symtab[symtab_index].st_info) != STB_WEAK))) { return 1; } if (_dl_trace_prelink) { _dl_debug_lookup (symname, tpnt, &symtab[symtab_index], &sym_ref, elf_machine_type_class(reloc_type)); } #if defined USE_TLS && USE_TLS tls_tpnt = sym_ref.tpnt; #endif } else { /* * Relocs against STN_UNDEF are usually treated as using a * symbol value of zero, and using the module containing the * reloc itself. */ symbol_addr = sym_ref.sym->st_value; #if defined USE_TLS && USE_TLS tls_tpnt = tpnt; #endif } #if defined (__SUPPORT_LD_DEBUG__) old_val = *reloc_addr; #endif switch (reloc_type) { case R_RISCV_NONE: break; case R_RISCV_64: /* REL_SYMBOLIC */ case R_RISCV_JUMP_SLOT: /* REL_PLT */ *reloc_addr = symbol_addr + rpnt->r_addend; break; case R_RISCV_RELATIVE: *reloc_addr += tpnt->loadaddr + rpnt->r_addend; break; case R_RISCV_COPY: _dl_memcpy((void *) reloc_addr, (void *) symbol_addr, sym_ref.sym->st_size); break; #if defined USE_TLS && USE_TLS case R_RISCV_TLS_DTPMOD64: *reloc_addr = tls_tpnt->l_tls_modid; break; case R_RISCV_TLS_DTPREL64: *reloc_addr = symbol_addr; break; case R_RISCV_TLS_TPREL64: CHECK_STATIC_TLS ((struct link_map *) tls_tpnt); *reloc_addr = tls_tpnt->l_tls_offset + symbol_addr + rpnt->r_addend; break; #endif default: return -1; /*call _dl_exit(1) */ } #if defined (__SUPPORT_LD_DEBUG__) if (_dl_debug_reloc && _dl_debug_detail) { _dl_dprintf(_dl_debug_file, "\tpatched: %x ==> %x @ %x\n", old_val, *reloc_addr, reloc_addr); } #endif return 0; } #undef __RISCV_LAZY_RELOC_WORKS #ifdef __RISCV_LAZY_RELOC_WORKS static int _dl_do_lazy_reloc (struct elf_resolve *tpnt, struct r_scope_elem *scope, ELF_RELOC *rpnt, ElfW(Sym) *symtab, char *strtab) { int reloc_type; ElfW(Addr) *reloc_addr; #if defined (__SUPPORT_LD_DEBUG__) ElfW(Addr) old_val; #endif (void)scope; (void)strtab; reloc_addr = (ElfW(Addr)*)(tpnt->loadaddr + rpnt->r_offset); reloc_type = ELF_R_TYPE(rpnt->r_info); #if defined (__SUPPORT_LD_DEBUG__) old_val = *reloc_addr; #endif switch (reloc_type) { case R_RISCV_NONE: break; case R_RISCV_JUMP_SLOT: break; default: return -1; /*call _dl_exit(1) */ } #if defined (__SUPPORT_LD_DEBUG__) if (_dl_debug_reloc && _dl_debug_detail) { _dl_dprintf(_dl_debug_file, "\tpatched_lazy: %x ==> %x @ %x\n", old_val, *reloc_addr, reloc_addr); } #endif return 0; } #endif void _dl_parse_lazy_relocation_information(struct dyn_elf *rpnt, unsigned long rel_addr, unsigned long rel_size) { #ifdef __RISCV_LAZY_RELOC_WORKS (void)_dl_parse(rpnt->dyn, NULL, rel_addr, rel_size, _dl_do_lazy_reloc); #else _dl_parse_relocation_information(rpnt, &_dl_loaded_modules->symbol_scope, rel_addr, rel_size); #endif } int _dl_parse_relocation_information(struct dyn_elf *rpnt, struct r_scope_elem *scope, unsigned long rel_addr, unsigned long rel_size) { return _dl_parse(rpnt->dyn, scope, rel_addr, rel_size, _dl_do_reloc); }