/* * The hashcode handling code below is heavily inspired in libiberty's * hashtab code, but with most adaptation points and support for * deleting elements removed. * * Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. * Contributed by Vladimir Makarov (vmakarov@cygnus.com). */ #ifndef INLINE_HASHTAB_H # define INLINE_HASHTAB_H 1 static __always_inline unsigned long higher_prime_number(unsigned long n) { /* These are primes that are near, but slightly smaller than, a power of two. */ static const unsigned long primes[] = { 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, 1073741789, /* 4294967291 */ ((unsigned long) 2147483647) + ((unsigned long) 2147483644), }; const unsigned long *low = &primes[0]; const unsigned long *high = &primes[ARRAY_SIZE(primes)]; while (low != high) { const unsigned long *mid = low + (high - low) / 2; if (n > *mid) low = mid + 1; else high = mid; } #if 0 /* If we've run out of primes, abort. */ if (n > *low) { fprintf(stderr, "Cannot find prime bigger than %lu\n", n); abort(); } #endif return *low; } struct funcdesc_ht { /* Table itself */ void **entries; /* Current size (in entries) of the hash table */ size_t size; /* Current number of elements */ size_t n_elements; }; static __always_inline struct funcdesc_ht * htab_create(void) { struct funcdesc_ht *ht = _dl_malloc(sizeof(*ht)); size_t ent_size; if (!ht) return NULL; ht->size = 3; ent_size = sizeof(void *) * ht->size; ht->entries = _dl_malloc(ent_size); if (!ht->entries) return NULL; ht->n_elements = 0; _dl_memset(ht->entries, 0, ent_size); return ht; } /* * This is only called from _dl_loadaddr_unmap, so it's safe to call * _dl_free(). See the discussion below. */ static __always_inline void htab_delete(struct funcdesc_ht *htab) { int i; for (i = htab->size - 1; i >= 0; i--) if (htab->entries[i]) _dl_free(htab->entries[i]); _dl_free(htab->entries); _dl_free(htab); } /* * Similar to htab_find_slot, but without several unwanted side effects: * - Does not call htab->eq_f when it finds an existing entry. * - Does not change the count of elements/searches/collisions in the * hash table. * This function also assumes there are no deleted entries in the table. * HASH is the hash value for the element to be inserted. */ static __always_inline void ** find_empty_slot_for_expand(struct funcdesc_ht *htab, int hash) { size_t size = htab->size; unsigned int index = hash % size; void **slot = htab->entries + index; int hash2; if (!*slot) return slot; hash2 = 1 + hash % (size - 2); for (;;) { index += hash2; if (index >= size) index -= size; slot = htab->entries + index; if (!*slot) return slot; } } /* * The following function changes size of memory allocated for the * entries and repeatedly inserts the table elements. The occupancy * of the table after the call will be about 50%. Naturally the hash * table must already exist. Remember also that the place of the * table entries is changed. If memory allocation failures are allowed, * this function will return zero, indicating that the table could not be * expanded. If all goes well, it will return a non-zero value. */ static __always_inline int htab_expand(struct funcdesc_ht *htab, int (*hash_fn) (void *)) { void **oentries; void **olimit; void **p; void **nentries; size_t nsize; oentries = htab->entries; olimit = oentries + htab->size; /* * Resize only when table after removal of unused elements is either * too full or too empty. */ if (htab->n_elements * 2 > htab->size) nsize = higher_prime_number(htab->n_elements * 2); else nsize = htab->size; nentries = _dl_malloc(sizeof(*nentries) * nsize); _dl_memset(nentries, 0, sizeof(*nentries) * nsize); if (nentries == NULL) return 0; htab->entries = nentries; htab->size = nsize; p = oentries; do { if (*p) *find_empty_slot_for_expand(htab, hash_fn(*p)) = *p; p++; } while (p < olimit); #if 0 /* * We can't tell whether this was allocated by the _dl_malloc() * built into ld.so or malloc() in the main executable or libc, * and calling free() for something that wasn't malloc()ed could * do Very Bad Things (TM). Take the conservative approach * here, potentially wasting as much memory as actually used by * the hash table, even if multiple growths occur. That's not * so bad as to require some overengineered solution that would * enable us to keep track of how it was allocated. */ _dl_free(oentries); #endif return 1; } /* * This function searches for a hash table slot containing an entry * equal to the given element. To delete an entry, call this with * INSERT = 0, then call htab_clear_slot on the slot returned (possibly * after doing some checks). To insert an entry, call this with * INSERT = 1, then write the value you want into the returned slot. * When inserting an entry, NULL may be returned if memory allocation * fails. */ static __always_inline void ** htab_find_slot(struct funcdesc_ht *htab, void *ptr, int insert, int (*hash_fn)(void *), int (*eq_fn)(void *, void *)) { unsigned int index; int hash, hash2; size_t size; void **entry; if (htab->size * 3 <= htab->n_elements * 4 && htab_expand(htab, hash_fn) == 0) return NULL; hash = hash_fn(ptr); size = htab->size; index = hash % size; entry = &htab->entries[index]; if (!*entry) goto empty_entry; else if (eq_fn(*entry, ptr)) return entry; hash2 = 1 + hash % (size - 2); for (;;) { index += hash2; if (index >= size) index -= size; entry = &htab->entries[index]; if (!*entry) goto empty_entry; else if (eq_fn(*entry, ptr)) return entry; } empty_entry: if (!insert) return NULL; htab->n_elements++; return entry; } #endif