diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc.c gcc-10.3.0/gcc/config/sparc/sparc.c --- gcc-10.3.0.orig/gcc/config/sparc/sparc.c 2021-04-08 13:56:28.201742273 +0200 +++ gcc-10.3.0/gcc/config/sparc/sparc.c 2021-04-09 07:51:37.884501308 +0200 @@ -4157,6 +4157,13 @@ static bool sparc_cannot_force_const_mem (machine_mode mode, rtx x) { + /* After IRA has run in PIC mode, it is too late to put anything into the + constant pool if the PIC register hasn't already been initialized. */ + if ((lra_in_progress || reload_in_progress) + && flag_pic + && !crtl->uses_pic_offset_table) + return true; + switch (GET_CODE (x)) { case CONST_INT: @@ -4192,11 +4199,9 @@ } /* Global Offset Table support. */ -static GTY(()) rtx got_symbol_rtx = NULL_RTX; -static GTY(()) rtx got_register_rtx = NULL_RTX; static GTY(()) rtx got_helper_rtx = NULL_RTX; - -static GTY(()) bool got_helper_needed = false; +static GTY(()) rtx got_register_rtx = NULL_RTX; +static GTY(()) rtx got_symbol_rtx = NULL_RTX; /* Return the SYMBOL_REF for the Global Offset Table. */ @@ -4209,6 +4214,27 @@ return got_symbol_rtx; } +#ifdef HAVE_GAS_HIDDEN +# define USE_HIDDEN_LINKONCE 1 +#else +# define USE_HIDDEN_LINKONCE 0 +#endif + +static void +get_pc_thunk_name (char name[32], unsigned int regno) +{ + const char *reg_name = reg_names[regno]; + + /* Skip the leading '%' as that cannot be used in a + symbol name. */ + reg_name += 1; + + if (USE_HIDDEN_LINKONCE) + sprintf (name, "__sparc_get_pc_thunk.%s", reg_name); + else + ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC", regno); +} + /* Wrapper around the load_pcrel_sym{si,di} patterns. */ static rtx @@ -4228,78 +4254,30 @@ return insn; } -/* Output the load_pcrel_sym{si,di} patterns. */ - -const char * -output_load_pcrel_sym (rtx *operands) -{ - if (flag_delayed_branch) - { - output_asm_insn ("sethi\t%%hi(%a1-4), %0", operands); - output_asm_insn ("call\t%a2", operands); - output_asm_insn (" add\t%0, %%lo(%a1+4), %0", operands); - } - else - { - output_asm_insn ("sethi\t%%hi(%a1-8), %0", operands); - output_asm_insn ("add\t%0, %%lo(%a1-4), %0", operands); - output_asm_insn ("call\t%a2", operands); - output_asm_insn (" nop", NULL); - } - - if (operands[2] == got_helper_rtx) - got_helper_needed = true; - - return ""; -} - -#ifdef HAVE_GAS_HIDDEN -# define USE_HIDDEN_LINKONCE 1 -#else -# define USE_HIDDEN_LINKONCE 0 -#endif - /* Emit code to load the GOT register. */ void load_got_register (void) { - rtx insn; + if (!got_register_rtx) + got_register_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM); if (TARGET_VXWORKS_RTP) - { - if (!got_register_rtx) - got_register_rtx = pic_offset_table_rtx; - - insn = gen_vxworks_load_got (); - } + emit_insn (gen_vxworks_load_got ()); else { - if (!got_register_rtx) - got_register_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM); - /* The GOT symbol is subject to a PC-relative relocation so we need a helper function to add the PC value and thus get the final value. */ if (!got_helper_rtx) { char name[32]; - - /* Skip the leading '%' as that cannot be used in a symbol name. */ - if (USE_HIDDEN_LINKONCE) - sprintf (name, "__sparc_get_pc_thunk.%s", - reg_names[REGNO (got_register_rtx)] + 1); - else - ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC", - REGNO (got_register_rtx)); - + get_pc_thunk_name (name, GLOBAL_OFFSET_TABLE_REGNUM); got_helper_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); } - insn - = gen_load_pcrel_sym (got_register_rtx, sparc_got (), got_helper_rtx); + emit_insn (gen_load_pcrel_sym (got_register_rtx, sparc_got (), + got_helper_rtx)); } - - emit_insn (insn); } /* Ensure that we are not using patterns that are not OK with PIC. */ @@ -5464,7 +5442,7 @@ return true; /* GOT register (%l7) if needed. */ - if (got_register_rtx && regno == REGNO (got_register_rtx)) + if (regno == GLOBAL_OFFSET_TABLE_REGNUM && got_register_rtx) return true; /* If the function accesses prior frames, the frame pointer and the return @@ -12507,9 +12485,10 @@ sparc_file_end (void) { /* If we need to emit the special GOT helper function, do so now. */ - if (got_helper_needed) + if (got_helper_rtx) { const char *name = XSTR (got_helper_rtx, 0); + const char *reg_name = reg_names[GLOBAL_OFFSET_TABLE_REGNUM]; #ifdef DWARF2_UNWIND_INFO bool do_cfi; #endif @@ -12546,22 +12525,17 @@ #ifdef DWARF2_UNWIND_INFO do_cfi = dwarf2out_do_cfi_asm (); if (do_cfi) - output_asm_insn (".cfi_startproc", NULL); + fprintf (asm_out_file, "\t.cfi_startproc\n"); #endif if (flag_delayed_branch) - { - output_asm_insn ("jmp\t%%o7+8", NULL); - output_asm_insn (" add\t%%o7, %0, %0", &got_register_rtx); - } + fprintf (asm_out_file, "\tjmp\t%%o7+8\n\t add\t%%o7, %s, %s\n", + reg_name, reg_name); else - { - output_asm_insn ("add\t%%o7, %0, %0", &got_register_rtx); - output_asm_insn ("jmp\t%%o7+8", NULL); - output_asm_insn (" nop", NULL); - } + fprintf (asm_out_file, "\tadd\t%%o7, %s, %s\n\tjmp\t%%o7+8\n\t nop\n", + reg_name, reg_name); #ifdef DWARF2_UNWIND_INFO if (do_cfi) - output_asm_insn (".cfi_endproc", NULL); + fprintf (asm_out_file, "\t.cfi_endproc\n"); #endif } @@ -13056,10 +13030,7 @@ edge entry_edge; rtx_insn *seq; - /* In PIC mode, we need to always initialize the PIC register if optimization - is enabled, because we are called from IRA and LRA may later force things - to the constant pool for optimization purposes. */ - if (!flag_pic || (!crtl->uses_pic_offset_table && !optimize)) + if (!crtl->uses_pic_offset_table) return; start_sequence (); diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc.c.orig gcc-10.3.0/gcc/config/sparc/sparc.c.orig --- gcc-10.3.0.orig/gcc/config/sparc/sparc.c.orig 1970-01-01 01:00:00.000000000 +0100 +++ gcc-10.3.0/gcc/config/sparc/sparc.c.orig 2021-04-08 13:56:28.201742273 +0200 @@ -0,0 +1,13813 @@ +/* Subroutines for insn-output.c for SPARC. + Copyright (C) 1987-2020 Free Software Foundation, Inc. + Contributed by Michael Tiemann (tiemann@cygnus.com) + 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, + at Cygnus Support. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +. */ + +#define IN_TARGET_CODE 1 + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "target.h" +#include "rtl.h" +#include "tree.h" +#include "memmodel.h" +#include "gimple.h" +#include "df.h" +#include "tm_p.h" +#include "stringpool.h" +#include "attribs.h" +#include "expmed.h" +#include "optabs.h" +#include "regs.h" +#include "emit-rtl.h" +#include "recog.h" +#include "diagnostic-core.h" +#include "alias.h" +#include "fold-const.h" +#include "stor-layout.h" +#include "calls.h" +#include "varasm.h" +#include "output.h" +#include "insn-attr.h" +#include "explow.h" +#include "expr.h" +#include "debug.h" +#include "cfgrtl.h" +#include "common/common-target.h" +#include "gimplify.h" +#include "langhooks.h" +#include "reload.h" +#include "tree-pass.h" +#include "context.h" +#include "builtins.h" +#include "tree-vector-builder.h" +#include "opts.h" + +/* This file should be included last. */ +#include "target-def.h" + +/* Processor costs */ + +struct processor_costs { + /* Integer load */ + const int int_load; + + /* Integer signed load */ + const int int_sload; + + /* Integer zeroed load */ + const int int_zload; + + /* Float load */ + const int float_load; + + /* fmov, fneg, fabs */ + const int float_move; + + /* fadd, fsub */ + const int float_plusminus; + + /* fcmp */ + const int float_cmp; + + /* fmov, fmovr */ + const int float_cmove; + + /* fmul */ + const int float_mul; + + /* fdivs */ + const int float_div_sf; + + /* fdivd */ + const int float_div_df; + + /* fsqrts */ + const int float_sqrt_sf; + + /* fsqrtd */ + const int float_sqrt_df; + + /* umul/smul */ + const int int_mul; + + /* mulX */ + const int int_mulX; + + /* integer multiply cost for each bit set past the most + significant 3, so the formula for multiply cost becomes: + + if (rs1 < 0) + highest_bit = highest_clear_bit(rs1); + else + highest_bit = highest_set_bit(rs1); + if (highest_bit < 3) + highest_bit = 3; + cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor); + + A value of zero indicates that the multiply costs is fixed, + and not variable. */ + const int int_mul_bit_factor; + + /* udiv/sdiv */ + const int int_div; + + /* divX */ + const int int_divX; + + /* movcc, movr */ + const int int_cmove; + + /* penalty for shifts, due to scheduling rules etc. */ + const int shift_penalty; + + /* cost of a (predictable) branch. */ + const int branch_cost; +}; + +static const +struct processor_costs cypress_costs = { + COSTS_N_INSNS (2), /* int load */ + COSTS_N_INSNS (2), /* int signed load */ + COSTS_N_INSNS (2), /* int zeroed load */ + COSTS_N_INSNS (2), /* float load */ + COSTS_N_INSNS (5), /* fmov, fneg, fabs */ + COSTS_N_INSNS (5), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (7), /* fmul */ + COSTS_N_INSNS (37), /* fdivs */ + COSTS_N_INSNS (37), /* fdivd */ + COSTS_N_INSNS (63), /* fsqrts */ + COSTS_N_INSNS (63), /* fsqrtd */ + COSTS_N_INSNS (1), /* imul */ + COSTS_N_INSNS (1), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (1), /* idiv */ + COSTS_N_INSNS (1), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 3 /* branch cost */ +}; + +static const +struct processor_costs supersparc_costs = { + COSTS_N_INSNS (1), /* int load */ + COSTS_N_INSNS (1), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (0), /* float load */ + COSTS_N_INSNS (3), /* fmov, fneg, fabs */ + COSTS_N_INSNS (3), /* fadd, fsub */ + COSTS_N_INSNS (3), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (3), /* fmul */ + COSTS_N_INSNS (6), /* fdivs */ + COSTS_N_INSNS (9), /* fdivd */ + COSTS_N_INSNS (12), /* fsqrts */ + COSTS_N_INSNS (12), /* fsqrtd */ + COSTS_N_INSNS (4), /* imul */ + COSTS_N_INSNS (4), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (4), /* idiv */ + COSTS_N_INSNS (4), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 1, /* shift penalty */ + 3 /* branch cost */ +}; + +static const +struct processor_costs hypersparc_costs = { + COSTS_N_INSNS (1), /* int load */ + COSTS_N_INSNS (1), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (1), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (1), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (1), /* fmul */ + COSTS_N_INSNS (8), /* fdivs */ + COSTS_N_INSNS (12), /* fdivd */ + COSTS_N_INSNS (17), /* fsqrts */ + COSTS_N_INSNS (17), /* fsqrtd */ + COSTS_N_INSNS (17), /* imul */ + COSTS_N_INSNS (17), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (17), /* idiv */ + COSTS_N_INSNS (17), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 3 /* branch cost */ +}; + +static const +struct processor_costs leon_costs = { + COSTS_N_INSNS (1), /* int load */ + COSTS_N_INSNS (1), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (1), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (1), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (1), /* fmul */ + COSTS_N_INSNS (15), /* fdivs */ + COSTS_N_INSNS (15), /* fdivd */ + COSTS_N_INSNS (23), /* fsqrts */ + COSTS_N_INSNS (23), /* fsqrtd */ + COSTS_N_INSNS (5), /* imul */ + COSTS_N_INSNS (5), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (5), /* idiv */ + COSTS_N_INSNS (5), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 3 /* branch cost */ +}; + +static const +struct processor_costs leon3_costs = { + COSTS_N_INSNS (1), /* int load */ + COSTS_N_INSNS (1), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (1), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (1), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (1), /* fmul */ + COSTS_N_INSNS (14), /* fdivs */ + COSTS_N_INSNS (15), /* fdivd */ + COSTS_N_INSNS (22), /* fsqrts */ + COSTS_N_INSNS (23), /* fsqrtd */ + COSTS_N_INSNS (5), /* imul */ + COSTS_N_INSNS (5), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (35), /* idiv */ + COSTS_N_INSNS (35), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 3 /* branch cost */ +}; + +static const +struct processor_costs sparclet_costs = { + COSTS_N_INSNS (3), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (1), /* int zeroed load */ + COSTS_N_INSNS (1), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (1), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (1), /* fmov, fmovr */ + COSTS_N_INSNS (1), /* fmul */ + COSTS_N_INSNS (1), /* fdivs */ + COSTS_N_INSNS (1), /* fdivd */ + COSTS_N_INSNS (1), /* fsqrts */ + COSTS_N_INSNS (1), /* fsqrtd */ + COSTS_N_INSNS (5), /* imul */ + COSTS_N_INSNS (5), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (5), /* idiv */ + COSTS_N_INSNS (5), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 3 /* branch cost */ +}; + +static const +struct processor_costs ultrasparc_costs = { + COSTS_N_INSNS (2), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (2), /* int zeroed load */ + COSTS_N_INSNS (2), /* float load */ + COSTS_N_INSNS (1), /* fmov, fneg, fabs */ + COSTS_N_INSNS (4), /* fadd, fsub */ + COSTS_N_INSNS (1), /* fcmp */ + COSTS_N_INSNS (2), /* fmov, fmovr */ + COSTS_N_INSNS (4), /* fmul */ + COSTS_N_INSNS (13), /* fdivs */ + COSTS_N_INSNS (23), /* fdivd */ + COSTS_N_INSNS (13), /* fsqrts */ + COSTS_N_INSNS (23), /* fsqrtd */ + COSTS_N_INSNS (4), /* imul */ + COSTS_N_INSNS (4), /* imulX */ + 2, /* imul bit factor */ + COSTS_N_INSNS (37), /* idiv */ + COSTS_N_INSNS (68), /* idivX */ + COSTS_N_INSNS (2), /* movcc/movr */ + 2, /* shift penalty */ + 2 /* branch cost */ +}; + +static const +struct processor_costs ultrasparc3_costs = { + COSTS_N_INSNS (2), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (3), /* int zeroed load */ + COSTS_N_INSNS (2), /* float load */ + COSTS_N_INSNS (3), /* fmov, fneg, fabs */ + COSTS_N_INSNS (4), /* fadd, fsub */ + COSTS_N_INSNS (5), /* fcmp */ + COSTS_N_INSNS (3), /* fmov, fmovr */ + COSTS_N_INSNS (4), /* fmul */ + COSTS_N_INSNS (17), /* fdivs */ + COSTS_N_INSNS (20), /* fdivd */ + COSTS_N_INSNS (20), /* fsqrts */ + COSTS_N_INSNS (29), /* fsqrtd */ + COSTS_N_INSNS (6), /* imul */ + COSTS_N_INSNS (6), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (40), /* idiv */ + COSTS_N_INSNS (71), /* idivX */ + COSTS_N_INSNS (2), /* movcc/movr */ + 0, /* shift penalty */ + 2 /* branch cost */ +}; + +static const +struct processor_costs niagara_costs = { + COSTS_N_INSNS (3), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (3), /* int zeroed load */ + COSTS_N_INSNS (9), /* float load */ + COSTS_N_INSNS (8), /* fmov, fneg, fabs */ + COSTS_N_INSNS (8), /* fadd, fsub */ + COSTS_N_INSNS (26), /* fcmp */ + COSTS_N_INSNS (8), /* fmov, fmovr */ + COSTS_N_INSNS (29), /* fmul */ + COSTS_N_INSNS (54), /* fdivs */ + COSTS_N_INSNS (83), /* fdivd */ + COSTS_N_INSNS (100), /* fsqrts - not implemented in hardware */ + COSTS_N_INSNS (100), /* fsqrtd - not implemented in hardware */ + COSTS_N_INSNS (11), /* imul */ + COSTS_N_INSNS (11), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (72), /* idiv */ + COSTS_N_INSNS (72), /* idivX */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 4 /* branch cost */ +}; + +static const +struct processor_costs niagara2_costs = { + COSTS_N_INSNS (3), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (3), /* int zeroed load */ + COSTS_N_INSNS (3), /* float load */ + COSTS_N_INSNS (6), /* fmov, fneg, fabs */ + COSTS_N_INSNS (6), /* fadd, fsub */ + COSTS_N_INSNS (6), /* fcmp */ + COSTS_N_INSNS (6), /* fmov, fmovr */ + COSTS_N_INSNS (6), /* fmul */ + COSTS_N_INSNS (19), /* fdivs */ + COSTS_N_INSNS (33), /* fdivd */ + COSTS_N_INSNS (19), /* fsqrts */ + COSTS_N_INSNS (33), /* fsqrtd */ + COSTS_N_INSNS (5), /* imul */ + COSTS_N_INSNS (5), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (26), /* idiv, average of 12 - 41 cycle range */ + COSTS_N_INSNS (26), /* idivX, average of 12 - 41 cycle range */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 5 /* branch cost */ +}; + +static const +struct processor_costs niagara3_costs = { + COSTS_N_INSNS (3), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (3), /* int zeroed load */ + COSTS_N_INSNS (3), /* float load */ + COSTS_N_INSNS (9), /* fmov, fneg, fabs */ + COSTS_N_INSNS (9), /* fadd, fsub */ + COSTS_N_INSNS (9), /* fcmp */ + COSTS_N_INSNS (9), /* fmov, fmovr */ + COSTS_N_INSNS (9), /* fmul */ + COSTS_N_INSNS (23), /* fdivs */ + COSTS_N_INSNS (37), /* fdivd */ + COSTS_N_INSNS (23), /* fsqrts */ + COSTS_N_INSNS (37), /* fsqrtd */ + COSTS_N_INSNS (9), /* imul */ + COSTS_N_INSNS (9), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (31), /* idiv, average of 17 - 45 cycle range */ + COSTS_N_INSNS (30), /* idivX, average of 16 - 44 cycle range */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 5 /* branch cost */ +}; + +static const +struct processor_costs niagara4_costs = { + COSTS_N_INSNS (5), /* int load */ + COSTS_N_INSNS (5), /* int signed load */ + COSTS_N_INSNS (5), /* int zeroed load */ + COSTS_N_INSNS (5), /* float load */ + COSTS_N_INSNS (11), /* fmov, fneg, fabs */ + COSTS_N_INSNS (11), /* fadd, fsub */ + COSTS_N_INSNS (11), /* fcmp */ + COSTS_N_INSNS (11), /* fmov, fmovr */ + COSTS_N_INSNS (11), /* fmul */ + COSTS_N_INSNS (24), /* fdivs */ + COSTS_N_INSNS (37), /* fdivd */ + COSTS_N_INSNS (24), /* fsqrts */ + COSTS_N_INSNS (37), /* fsqrtd */ + COSTS_N_INSNS (12), /* imul */ + COSTS_N_INSNS (12), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (50), /* idiv, average of 41 - 60 cycle range */ + COSTS_N_INSNS (35), /* idivX, average of 26 - 44 cycle range */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 2 /* branch cost */ +}; + +static const +struct processor_costs niagara7_costs = { + COSTS_N_INSNS (5), /* int load */ + COSTS_N_INSNS (5), /* int signed load */ + COSTS_N_INSNS (5), /* int zeroed load */ + COSTS_N_INSNS (5), /* float load */ + COSTS_N_INSNS (11), /* fmov, fneg, fabs */ + COSTS_N_INSNS (11), /* fadd, fsub */ + COSTS_N_INSNS (11), /* fcmp */ + COSTS_N_INSNS (11), /* fmov, fmovr */ + COSTS_N_INSNS (11), /* fmul */ + COSTS_N_INSNS (24), /* fdivs */ + COSTS_N_INSNS (37), /* fdivd */ + COSTS_N_INSNS (24), /* fsqrts */ + COSTS_N_INSNS (37), /* fsqrtd */ + COSTS_N_INSNS (12), /* imul */ + COSTS_N_INSNS (12), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (51), /* idiv, average of 42 - 61 cycle range */ + COSTS_N_INSNS (35), /* idivX, average of 26 - 44 cycle range */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 1 /* branch cost */ +}; + +static const +struct processor_costs m8_costs = { + COSTS_N_INSNS (3), /* int load */ + COSTS_N_INSNS (3), /* int signed load */ + COSTS_N_INSNS (3), /* int zeroed load */ + COSTS_N_INSNS (3), /* float load */ + COSTS_N_INSNS (9), /* fmov, fneg, fabs */ + COSTS_N_INSNS (9), /* fadd, fsub */ + COSTS_N_INSNS (9), /* fcmp */ + COSTS_N_INSNS (9), /* fmov, fmovr */ + COSTS_N_INSNS (9), /* fmul */ + COSTS_N_INSNS (26), /* fdivs */ + COSTS_N_INSNS (30), /* fdivd */ + COSTS_N_INSNS (33), /* fsqrts */ + COSTS_N_INSNS (41), /* fsqrtd */ + COSTS_N_INSNS (12), /* imul */ + COSTS_N_INSNS (10), /* imulX */ + 0, /* imul bit factor */ + COSTS_N_INSNS (57), /* udiv/sdiv */ + COSTS_N_INSNS (30), /* udivx/sdivx */ + COSTS_N_INSNS (1), /* movcc/movr */ + 0, /* shift penalty */ + 1 /* branch cost */ +}; + +static const struct processor_costs *sparc_costs = &cypress_costs; + +#ifdef HAVE_AS_RELAX_OPTION +/* If 'as' and 'ld' are relaxing tail call insns into branch always, use + "or %o7,%g0,X; call Y; or X,%g0,%o7" always, so that it can be optimized. + With sethi/jmp, neither 'as' nor 'ld' has an easy way how to find out if + somebody does not branch between the sethi and jmp. */ +#define LEAF_SIBCALL_SLOT_RESERVED_P 1 +#else +#define LEAF_SIBCALL_SLOT_RESERVED_P \ + ((TARGET_ARCH64 && !TARGET_CM_MEDLOW) || flag_pic) +#endif + +/* Vector to say how input registers are mapped to output registers. + HARD_FRAME_POINTER_REGNUM cannot be remapped by this function to + eliminate it. You must use -fomit-frame-pointer to get that. */ +char leaf_reg_remap[] = +{ 0, 1, 2, 3, 4, 5, 6, 7, + -1, -1, -1, -1, -1, -1, 14, -1, + -1, -1, -1, -1, -1, -1, -1, -1, + 8, 9, 10, 11, 12, 13, -1, 15, + + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102}; + +/* Vector, indexed by hard register number, which contains 1 + for a register that is allowable in a candidate for leaf + function treatment. */ +char sparc_leaf_regs[] = +{ 1, 1, 1, 1, 1, 1, 1, 1, + 0, 0, 0, 0, 0, 0, 1, 0, + 0, 0, 0, 0, 0, 0, 0, 0, + 1, 1, 1, 1, 1, 1, 0, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1}; + +struct GTY(()) machine_function +{ + /* Size of the frame of the function. */ + HOST_WIDE_INT frame_size; + + /* Size of the frame of the function minus the register window save area + and the outgoing argument area. */ + HOST_WIDE_INT apparent_frame_size; + + /* Register we pretend the frame pointer is allocated to. Normally, this + is %fp, but if we are in a leaf procedure, this is (%sp + offset). We + record "offset" separately as it may be too big for (reg + disp). */ + rtx frame_base_reg; + HOST_WIDE_INT frame_base_offset; + + /* Number of global or FP registers to be saved (as 4-byte quantities). */ + int n_global_fp_regs; + + /* True if the current function is leaf and uses only leaf regs, + so that the SPARC leaf function optimization can be applied. + Private version of crtl->uses_only_leaf_regs, see + sparc_expand_prologue for the rationale. */ + int leaf_function_p; + + /* True if the prologue saves local or in registers. */ + bool save_local_in_regs_p; + + /* True if the data calculated by sparc_expand_prologue are valid. */ + bool prologue_data_valid_p; +}; + +#define sparc_frame_size cfun->machine->frame_size +#define sparc_apparent_frame_size cfun->machine->apparent_frame_size +#define sparc_frame_base_reg cfun->machine->frame_base_reg +#define sparc_frame_base_offset cfun->machine->frame_base_offset +#define sparc_n_global_fp_regs cfun->machine->n_global_fp_regs +#define sparc_leaf_function_p cfun->machine->leaf_function_p +#define sparc_save_local_in_regs_p cfun->machine->save_local_in_regs_p +#define sparc_prologue_data_valid_p cfun->machine->prologue_data_valid_p + +/* 1 if the next opcode is to be specially indented. */ +int sparc_indent_opcode = 0; + +static void sparc_option_override (void); +static void sparc_init_modes (void); +static int function_arg_slotno (const CUMULATIVE_ARGS *, machine_mode, + const_tree, bool, bool, int *, int *); + +static int supersparc_adjust_cost (rtx_insn *, int, rtx_insn *, int); +static int hypersparc_adjust_cost (rtx_insn *, int, rtx_insn *, int); + +static void sparc_emit_set_const32 (rtx, rtx); +static void sparc_emit_set_const64 (rtx, rtx); +static void sparc_output_addr_vec (rtx); +static void sparc_output_addr_diff_vec (rtx); +static void sparc_output_deferred_case_vectors (void); +static bool sparc_legitimate_address_p (machine_mode, rtx, bool); +static bool sparc_legitimate_constant_p (machine_mode, rtx); +static rtx sparc_builtin_saveregs (void); +static int epilogue_renumber (rtx *, int); +static bool sparc_assemble_integer (rtx, unsigned int, int); +static int set_extends (rtx_insn *); +static void sparc_asm_function_prologue (FILE *); +static void sparc_asm_function_epilogue (FILE *); +#ifdef TARGET_SOLARIS +static void sparc_solaris_elf_asm_named_section (const char *, unsigned int, + tree) ATTRIBUTE_UNUSED; +#endif +static int sparc_adjust_cost (rtx_insn *, int, rtx_insn *, int, unsigned int); +static int sparc_issue_rate (void); +static void sparc_sched_init (FILE *, int, int); +static int sparc_use_sched_lookahead (void); + +static void emit_soft_tfmode_libcall (const char *, int, rtx *); +static void emit_soft_tfmode_binop (enum rtx_code, rtx *); +static void emit_soft_tfmode_unop (enum rtx_code, rtx *); +static void emit_soft_tfmode_cvt (enum rtx_code, rtx *); +static void emit_hard_tfmode_operation (enum rtx_code, rtx *); + +static bool sparc_function_ok_for_sibcall (tree, tree); +static void sparc_init_libfuncs (void); +static void sparc_init_builtins (void); +static void sparc_fpu_init_builtins (void); +static void sparc_vis_init_builtins (void); +static tree sparc_builtin_decl (unsigned, bool); +static rtx sparc_expand_builtin (tree, rtx, rtx, machine_mode, int); +static tree sparc_fold_builtin (tree, int, tree *, bool); +static void sparc_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, + HOST_WIDE_INT, tree); +static bool sparc_can_output_mi_thunk (const_tree, HOST_WIDE_INT, + HOST_WIDE_INT, const_tree); +static struct machine_function * sparc_init_machine_status (void); +static bool sparc_cannot_force_const_mem (machine_mode, rtx); +static rtx sparc_tls_get_addr (void); +static rtx sparc_tls_got (void); +static int sparc_register_move_cost (machine_mode, + reg_class_t, reg_class_t); +static bool sparc_rtx_costs (rtx, machine_mode, int, int, int *, bool); +static machine_mode sparc_promote_function_mode (const_tree, machine_mode, + int *, const_tree, int); +static bool sparc_strict_argument_naming (cumulative_args_t); +static void sparc_va_start (tree, rtx); +static tree sparc_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *); +static bool sparc_vector_mode_supported_p (machine_mode); +static bool sparc_tls_referenced_p (rtx); +static rtx sparc_legitimize_tls_address (rtx); +static rtx sparc_legitimize_pic_address (rtx, rtx); +static rtx sparc_legitimize_address (rtx, rtx, machine_mode); +static rtx sparc_delegitimize_address (rtx); +static bool sparc_mode_dependent_address_p (const_rtx, addr_space_t); +static bool sparc_pass_by_reference (cumulative_args_t, + const function_arg_info &); +static void sparc_function_arg_advance (cumulative_args_t, + const function_arg_info &); +static rtx sparc_function_arg (cumulative_args_t, const function_arg_info &); +static rtx sparc_function_incoming_arg (cumulative_args_t, + const function_arg_info &); +static pad_direction sparc_function_arg_padding (machine_mode, const_tree); +static unsigned int sparc_function_arg_boundary (machine_mode, + const_tree); +static int sparc_arg_partial_bytes (cumulative_args_t, + const function_arg_info &); +static bool sparc_return_in_memory (const_tree, const_tree); +static rtx sparc_struct_value_rtx (tree, int); +static rtx sparc_function_value (const_tree, const_tree, bool); +static rtx sparc_libcall_value (machine_mode, const_rtx); +static bool sparc_function_value_regno_p (const unsigned int); +static unsigned HOST_WIDE_INT sparc_asan_shadow_offset (void); +static void sparc_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED; +static void sparc_file_end (void); +static bool sparc_frame_pointer_required (void); +static bool sparc_can_eliminate (const int, const int); +static void sparc_conditional_register_usage (void); +static bool sparc_use_pseudo_pic_reg (void); +static void sparc_init_pic_reg (void); +#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING +static const char *sparc_mangle_type (const_tree); +#endif +static void sparc_trampoline_init (rtx, tree, rtx); +static machine_mode sparc_preferred_simd_mode (scalar_mode); +static reg_class_t sparc_preferred_reload_class (rtx x, reg_class_t rclass); +static bool sparc_lra_p (void); +static bool sparc_print_operand_punct_valid_p (unsigned char); +static void sparc_print_operand (FILE *, rtx, int); +static void sparc_print_operand_address (FILE *, machine_mode, rtx); +static reg_class_t sparc_secondary_reload (bool, rtx, reg_class_t, + machine_mode, + secondary_reload_info *); +static bool sparc_secondary_memory_needed (machine_mode, reg_class_t, + reg_class_t); +static machine_mode sparc_secondary_memory_needed_mode (machine_mode); +static scalar_int_mode sparc_cstore_mode (enum insn_code icode); +static void sparc_atomic_assign_expand_fenv (tree *, tree *, tree *); +static bool sparc_fixed_condition_code_regs (unsigned int *, unsigned int *); +static unsigned int sparc_min_arithmetic_precision (void); +static unsigned int sparc_hard_regno_nregs (unsigned int, machine_mode); +static bool sparc_hard_regno_mode_ok (unsigned int, machine_mode); +static bool sparc_modes_tieable_p (machine_mode, machine_mode); +static bool sparc_can_change_mode_class (machine_mode, machine_mode, + reg_class_t); +static HOST_WIDE_INT sparc_constant_alignment (const_tree, HOST_WIDE_INT); +static bool sparc_vectorize_vec_perm_const (machine_mode, rtx, rtx, rtx, + const vec_perm_indices &); +static bool sparc_can_follow_jump (const rtx_insn *, const rtx_insn *); + +#ifdef SUBTARGET_ATTRIBUTE_TABLE +/* Table of valid machine attributes. */ +static const struct attribute_spec sparc_attribute_table[] = +{ + /* { name, min_len, max_len, decl_req, type_req, fn_type_req, + do_diagnostic, handler, exclude } */ + SUBTARGET_ATTRIBUTE_TABLE, + { NULL, 0, 0, false, false, false, false, NULL, NULL } +}; +#endif + +char sparc_hard_reg_printed[8]; + +/* Initialize the GCC target structure. */ + +/* The default is to use .half rather than .short for aligned HI objects. */ +#undef TARGET_ASM_ALIGNED_HI_OP +#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t" + +#undef TARGET_ASM_UNALIGNED_HI_OP +#define TARGET_ASM_UNALIGNED_HI_OP "\t.uahalf\t" +#undef TARGET_ASM_UNALIGNED_SI_OP +#define TARGET_ASM_UNALIGNED_SI_OP "\t.uaword\t" +#undef TARGET_ASM_UNALIGNED_DI_OP +#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaxword\t" + +/* The target hook has to handle DI-mode values. */ +#undef TARGET_ASM_INTEGER +#define TARGET_ASM_INTEGER sparc_assemble_integer + +#undef TARGET_ASM_FUNCTION_PROLOGUE +#define TARGET_ASM_FUNCTION_PROLOGUE sparc_asm_function_prologue +#undef TARGET_ASM_FUNCTION_EPILOGUE +#define TARGET_ASM_FUNCTION_EPILOGUE sparc_asm_function_epilogue + +#undef TARGET_SCHED_ADJUST_COST +#define TARGET_SCHED_ADJUST_COST sparc_adjust_cost +#undef TARGET_SCHED_ISSUE_RATE +#define TARGET_SCHED_ISSUE_RATE sparc_issue_rate +#undef TARGET_SCHED_INIT +#define TARGET_SCHED_INIT sparc_sched_init +#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD +#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD sparc_use_sched_lookahead + +#undef TARGET_FUNCTION_OK_FOR_SIBCALL +#define TARGET_FUNCTION_OK_FOR_SIBCALL sparc_function_ok_for_sibcall + +#undef TARGET_INIT_LIBFUNCS +#define TARGET_INIT_LIBFUNCS sparc_init_libfuncs + +#undef TARGET_LEGITIMIZE_ADDRESS +#define TARGET_LEGITIMIZE_ADDRESS sparc_legitimize_address +#undef TARGET_DELEGITIMIZE_ADDRESS +#define TARGET_DELEGITIMIZE_ADDRESS sparc_delegitimize_address +#undef TARGET_MODE_DEPENDENT_ADDRESS_P +#define TARGET_MODE_DEPENDENT_ADDRESS_P sparc_mode_dependent_address_p + +#undef TARGET_INIT_BUILTINS +#define TARGET_INIT_BUILTINS sparc_init_builtins +#undef TARGET_BUILTIN_DECL +#define TARGET_BUILTIN_DECL sparc_builtin_decl +#undef TARGET_EXPAND_BUILTIN +#define TARGET_EXPAND_BUILTIN sparc_expand_builtin +#undef TARGET_FOLD_BUILTIN +#define TARGET_FOLD_BUILTIN sparc_fold_builtin + +#if TARGET_TLS +#undef TARGET_HAVE_TLS +#define TARGET_HAVE_TLS true +#endif + +#undef TARGET_CANNOT_FORCE_CONST_MEM +#define TARGET_CANNOT_FORCE_CONST_MEM sparc_cannot_force_const_mem + +#undef TARGET_ASM_OUTPUT_MI_THUNK +#define TARGET_ASM_OUTPUT_MI_THUNK sparc_output_mi_thunk +#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK +#define TARGET_ASM_CAN_OUTPUT_MI_THUNK sparc_can_output_mi_thunk + +#undef TARGET_RTX_COSTS +#define TARGET_RTX_COSTS sparc_rtx_costs +#undef TARGET_ADDRESS_COST +#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0 +#undef TARGET_REGISTER_MOVE_COST +#define TARGET_REGISTER_MOVE_COST sparc_register_move_cost + +#undef TARGET_PROMOTE_FUNCTION_MODE +#define TARGET_PROMOTE_FUNCTION_MODE sparc_promote_function_mode +#undef TARGET_STRICT_ARGUMENT_NAMING +#define TARGET_STRICT_ARGUMENT_NAMING sparc_strict_argument_naming + +#undef TARGET_MUST_PASS_IN_STACK +#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size +#undef TARGET_PASS_BY_REFERENCE +#define TARGET_PASS_BY_REFERENCE sparc_pass_by_reference +#undef TARGET_ARG_PARTIAL_BYTES +#define TARGET_ARG_PARTIAL_BYTES sparc_arg_partial_bytes +#undef TARGET_FUNCTION_ARG_ADVANCE +#define TARGET_FUNCTION_ARG_ADVANCE sparc_function_arg_advance +#undef TARGET_FUNCTION_ARG +#define TARGET_FUNCTION_ARG sparc_function_arg +#undef TARGET_FUNCTION_INCOMING_ARG +#define TARGET_FUNCTION_INCOMING_ARG sparc_function_incoming_arg +#undef TARGET_FUNCTION_ARG_PADDING +#define TARGET_FUNCTION_ARG_PADDING sparc_function_arg_padding +#undef TARGET_FUNCTION_ARG_BOUNDARY +#define TARGET_FUNCTION_ARG_BOUNDARY sparc_function_arg_boundary + +#undef TARGET_RETURN_IN_MEMORY +#define TARGET_RETURN_IN_MEMORY sparc_return_in_memory +#undef TARGET_STRUCT_VALUE_RTX +#define TARGET_STRUCT_VALUE_RTX sparc_struct_value_rtx +#undef TARGET_FUNCTION_VALUE +#define TARGET_FUNCTION_VALUE sparc_function_value +#undef TARGET_LIBCALL_VALUE +#define TARGET_LIBCALL_VALUE sparc_libcall_value +#undef TARGET_FUNCTION_VALUE_REGNO_P +#define TARGET_FUNCTION_VALUE_REGNO_P sparc_function_value_regno_p + +#undef TARGET_EXPAND_BUILTIN_SAVEREGS +#define TARGET_EXPAND_BUILTIN_SAVEREGS sparc_builtin_saveregs + +#undef TARGET_ASAN_SHADOW_OFFSET +#define TARGET_ASAN_SHADOW_OFFSET sparc_asan_shadow_offset + +#undef TARGET_EXPAND_BUILTIN_VA_START +#define TARGET_EXPAND_BUILTIN_VA_START sparc_va_start +#undef TARGET_GIMPLIFY_VA_ARG_EXPR +#define TARGET_GIMPLIFY_VA_ARG_EXPR sparc_gimplify_va_arg + +#undef TARGET_VECTOR_MODE_SUPPORTED_P +#define TARGET_VECTOR_MODE_SUPPORTED_P sparc_vector_mode_supported_p + +#undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE +#define TARGET_VECTORIZE_PREFERRED_SIMD_MODE sparc_preferred_simd_mode + +#ifdef SUBTARGET_INSERT_ATTRIBUTES +#undef TARGET_INSERT_ATTRIBUTES +#define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES +#endif + +#ifdef SUBTARGET_ATTRIBUTE_TABLE +#undef TARGET_ATTRIBUTE_TABLE +#define TARGET_ATTRIBUTE_TABLE sparc_attribute_table +#endif + +#undef TARGET_OPTION_OVERRIDE +#define TARGET_OPTION_OVERRIDE sparc_option_override + +#ifdef TARGET_THREAD_SSP_OFFSET +#undef TARGET_STACK_PROTECT_GUARD +#define TARGET_STACK_PROTECT_GUARD hook_tree_void_null +#endif + +#if TARGET_GNU_TLS && defined(HAVE_AS_SPARC_UA_PCREL) +#undef TARGET_ASM_OUTPUT_DWARF_DTPREL +#define TARGET_ASM_OUTPUT_DWARF_DTPREL sparc_output_dwarf_dtprel +#endif + +#undef TARGET_ASM_FILE_END +#define TARGET_ASM_FILE_END sparc_file_end + +#undef TARGET_FRAME_POINTER_REQUIRED +#define TARGET_FRAME_POINTER_REQUIRED sparc_frame_pointer_required + +#undef TARGET_CAN_ELIMINATE +#define TARGET_CAN_ELIMINATE sparc_can_eliminate + +#undef TARGET_PREFERRED_RELOAD_CLASS +#define TARGET_PREFERRED_RELOAD_CLASS sparc_preferred_reload_class + +#undef TARGET_SECONDARY_RELOAD +#define TARGET_SECONDARY_RELOAD sparc_secondary_reload +#undef TARGET_SECONDARY_MEMORY_NEEDED +#define TARGET_SECONDARY_MEMORY_NEEDED sparc_secondary_memory_needed +#undef TARGET_SECONDARY_MEMORY_NEEDED_MODE +#define TARGET_SECONDARY_MEMORY_NEEDED_MODE sparc_secondary_memory_needed_mode + +#undef TARGET_CONDITIONAL_REGISTER_USAGE +#define TARGET_CONDITIONAL_REGISTER_USAGE sparc_conditional_register_usage + +#undef TARGET_INIT_PIC_REG +#define TARGET_INIT_PIC_REG sparc_init_pic_reg + +#undef TARGET_USE_PSEUDO_PIC_REG +#define TARGET_USE_PSEUDO_PIC_REG sparc_use_pseudo_pic_reg + +#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING +#undef TARGET_MANGLE_TYPE +#define TARGET_MANGLE_TYPE sparc_mangle_type +#endif + +#undef TARGET_LRA_P +#define TARGET_LRA_P sparc_lra_p + +#undef TARGET_LEGITIMATE_ADDRESS_P +#define TARGET_LEGITIMATE_ADDRESS_P sparc_legitimate_address_p + +#undef TARGET_LEGITIMATE_CONSTANT_P +#define TARGET_LEGITIMATE_CONSTANT_P sparc_legitimate_constant_p + +#undef TARGET_TRAMPOLINE_INIT +#define TARGET_TRAMPOLINE_INIT sparc_trampoline_init + +#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P +#define TARGET_PRINT_OPERAND_PUNCT_VALID_P sparc_print_operand_punct_valid_p +#undef TARGET_PRINT_OPERAND +#define TARGET_PRINT_OPERAND sparc_print_operand +#undef TARGET_PRINT_OPERAND_ADDRESS +#define TARGET_PRINT_OPERAND_ADDRESS sparc_print_operand_address + +/* The value stored by LDSTUB. */ +#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL +#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 0xff + +#undef TARGET_CSTORE_MODE +#define TARGET_CSTORE_MODE sparc_cstore_mode + +#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV +#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV sparc_atomic_assign_expand_fenv + +#undef TARGET_FIXED_CONDITION_CODE_REGS +#define TARGET_FIXED_CONDITION_CODE_REGS sparc_fixed_condition_code_regs + +#undef TARGET_MIN_ARITHMETIC_PRECISION +#define TARGET_MIN_ARITHMETIC_PRECISION sparc_min_arithmetic_precision + +#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS +#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1 + +#undef TARGET_HARD_REGNO_NREGS +#define TARGET_HARD_REGNO_NREGS sparc_hard_regno_nregs +#undef TARGET_HARD_REGNO_MODE_OK +#define TARGET_HARD_REGNO_MODE_OK sparc_hard_regno_mode_ok + +#undef TARGET_MODES_TIEABLE_P +#define TARGET_MODES_TIEABLE_P sparc_modes_tieable_p + +#undef TARGET_CAN_CHANGE_MODE_CLASS +#define TARGET_CAN_CHANGE_MODE_CLASS sparc_can_change_mode_class + +#undef TARGET_CONSTANT_ALIGNMENT +#define TARGET_CONSTANT_ALIGNMENT sparc_constant_alignment + +#undef TARGET_VECTORIZE_VEC_PERM_CONST +#define TARGET_VECTORIZE_VEC_PERM_CONST sparc_vectorize_vec_perm_const + +#undef TARGET_CAN_FOLLOW_JUMP +#define TARGET_CAN_FOLLOW_JUMP sparc_can_follow_jump + +struct gcc_target targetm = TARGET_INITIALIZER; + +/* Return the memory reference contained in X if any, zero otherwise. */ + +static rtx +mem_ref (rtx x) +{ + if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND) + x = XEXP (x, 0); + + if (MEM_P (x)) + return x; + + return NULL_RTX; +} + +/* True if any of INSN's source register(s) is REG. */ + +static bool +insn_uses_reg_p (rtx_insn *insn, unsigned int reg) +{ + extract_insn (insn); + return ((REG_P (recog_data.operand[1]) + && REGNO (recog_data.operand[1]) == reg) + || (recog_data.n_operands == 3 + && REG_P (recog_data.operand[2]) + && REGNO (recog_data.operand[2]) == reg)); +} + +/* True if INSN is a floating-point division or square-root. */ + +static bool +div_sqrt_insn_p (rtx_insn *insn) +{ + if (GET_CODE (PATTERN (insn)) != SET) + return false; + + switch (get_attr_type (insn)) + { + case TYPE_FPDIVS: + case TYPE_FPSQRTS: + case TYPE_FPDIVD: + case TYPE_FPSQRTD: + return true; + default: + return false; + } +} + +/* True if INSN is a floating-point instruction. */ + +static bool +fpop_insn_p (rtx_insn *insn) +{ + if (GET_CODE (PATTERN (insn)) != SET) + return false; + + switch (get_attr_type (insn)) + { + case TYPE_FPMOVE: + case TYPE_FPCMOVE: + case TYPE_FP: + case TYPE_FPCMP: + case TYPE_FPMUL: + case TYPE_FPDIVS: + case TYPE_FPSQRTS: + case TYPE_FPDIVD: + case TYPE_FPSQRTD: + return true; + default: + return false; + } +} + +/* True if INSN is an atomic instruction. */ + +static bool +atomic_insn_for_leon3_p (rtx_insn *insn) +{ + switch (INSN_CODE (insn)) + { + case CODE_FOR_swapsi: + case CODE_FOR_ldstub: + case CODE_FOR_atomic_compare_and_swap_leon3_1: + return true; + default: + return false; + } +} + +/* We use a machine specific pass to enable workarounds for errata. + + We need to have the (essentially) final form of the insn stream in order + to properly detect the various hazards. Therefore, this machine specific + pass runs as late as possible. */ + +/* True if INSN is a md pattern or asm statement. */ +#define USEFUL_INSN_P(INSN) \ + (NONDEBUG_INSN_P (INSN) \ + && GET_CODE (PATTERN (INSN)) != USE \ + && GET_CODE (PATTERN (INSN)) != CLOBBER) + +static unsigned int +sparc_do_work_around_errata (void) +{ + rtx_insn *insn, *next; + + /* Force all instructions to be split into their final form. */ + split_all_insns_noflow (); + + /* Now look for specific patterns in the insn stream. */ + for (insn = get_insns (); insn; insn = next) + { + bool insert_nop = false; + rtx set; + rtx_insn *jump; + rtx_sequence *seq; + + /* Look into the instruction in a delay slot. */ + if (NONJUMP_INSN_P (insn) + && (seq = dyn_cast (PATTERN (insn)))) + { + jump = seq->insn (0); + insn = seq->insn (1); + } + else if (JUMP_P (insn)) + jump = insn; + else + jump = NULL; + + /* Place a NOP at the branch target of an integer branch if it is a + floating-point operation or a floating-point branch. */ + if (sparc_fix_gr712rc + && jump + && jump_to_label_p (jump) + && get_attr_branch_type (jump) == BRANCH_TYPE_ICC) + { + rtx_insn *target = next_active_insn (JUMP_LABEL_AS_INSN (jump)); + if (target + && (fpop_insn_p (target) + || (JUMP_P (target) + && get_attr_branch_type (target) == BRANCH_TYPE_FCC))) + emit_insn_before (gen_nop (), target); + } + + /* Insert a NOP between load instruction and atomic instruction. Insert + a NOP at branch target if there is a load in delay slot and an atomic + instruction at branch target. */ + if (sparc_fix_ut700 + && NONJUMP_INSN_P (insn) + && (set = single_set (insn)) != NULL_RTX + && mem_ref (SET_SRC (set)) + && REG_P (SET_DEST (set))) + { + if (jump && jump_to_label_p (jump)) + { + rtx_insn *target = next_active_insn (JUMP_LABEL_AS_INSN (jump)); + if (target && atomic_insn_for_leon3_p (target)) + emit_insn_before (gen_nop (), target); + } + + next = next_active_insn (insn); + if (!next) + break; + + if (atomic_insn_for_leon3_p (next)) + insert_nop = true; + } + + /* Look for a sequence that starts with a fdiv or fsqrt instruction and + ends with another fdiv or fsqrt instruction with no dependencies on + the former, along with an appropriate pattern in between. */ + if (sparc_fix_lost_divsqrt + && NONJUMP_INSN_P (insn) + && div_sqrt_insn_p (insn)) + { + int i; + int fp_found = 0; + rtx_insn *after; + + const unsigned int dest_reg = REGNO (SET_DEST (single_set (insn))); + + next = next_active_insn (insn); + if (!next) + break; + + for (after = next, i = 0; i < 4; i++) + { + /* Count floating-point operations. */ + if (i != 3 && fpop_insn_p (after)) + { + /* If the insn uses the destination register of + the div/sqrt, then it cannot be problematic. */ + if (insn_uses_reg_p (after, dest_reg)) + break; + fp_found++; + } + + /* Count floating-point loads. */ + if (i != 3 + && (set = single_set (after)) != NULL_RTX + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) > 31) + { + /* If the insn uses the destination register of + the div/sqrt, then it cannot be problematic. */ + if (REGNO (SET_DEST (set)) == dest_reg) + break; + fp_found++; + } + + /* Check if this is a problematic sequence. */ + if (i > 1 + && fp_found >= 2 + && div_sqrt_insn_p (after)) + { + /* If this is the short version of the problematic + sequence we add two NOPs in a row to also prevent + the long version. */ + if (i == 2) + emit_insn_before (gen_nop (), next); + insert_nop = true; + break; + } + + /* No need to scan past a second div/sqrt. */ + if (div_sqrt_insn_p (after)) + break; + + /* Insert NOP before branch. */ + if (i < 3 + && (!NONJUMP_INSN_P (after) + || GET_CODE (PATTERN (after)) == SEQUENCE)) + { + insert_nop = true; + break; + } + + after = next_active_insn (after); + if (!after) + break; + } + } + + /* Look for either of these two sequences: + + Sequence A: + 1. store of word size or less (e.g. st / stb / sth / stf) + 2. any single instruction that is not a load or store + 3. any store instruction (e.g. st / stb / sth / stf / std / stdf) + + Sequence B: + 1. store of double word size (e.g. std / stdf) + 2. any store instruction (e.g. st / stb / sth / stf / std / stdf) */ + if (sparc_fix_b2bst + && NONJUMP_INSN_P (insn) + && (set = single_set (insn)) != NULL_RTX + && MEM_P (SET_DEST (set))) + { + /* Sequence B begins with a double-word store. */ + bool seq_b = GET_MODE_SIZE (GET_MODE (SET_DEST (set))) == 8; + rtx_insn *after; + int i; + + next = next_active_insn (insn); + if (!next) + break; + + for (after = next, i = 0; i < 2; i++) + { + /* Skip empty assembly statements. */ + if ((GET_CODE (PATTERN (after)) == UNSPEC_VOLATILE) + || (USEFUL_INSN_P (after) + && (asm_noperands (PATTERN (after))>=0) + && !strcmp (decode_asm_operands (PATTERN (after), + NULL, NULL, NULL, + NULL, NULL), ""))) + after = next_active_insn (after); + if (!after) + break; + + /* If the insn is a branch, then it cannot be problematic. */ + if (!NONJUMP_INSN_P (after) + || GET_CODE (PATTERN (after)) == SEQUENCE) + break; + + /* Sequence B is only two instructions long. */ + if (seq_b) + { + /* Add NOP if followed by a store. */ + if ((set = single_set (after)) != NULL_RTX + && MEM_P (SET_DEST (set))) + insert_nop = true; + + /* Otherwise it is ok. */ + break; + } + + /* If the second instruction is a load or a store, + then the sequence cannot be problematic. */ + if (i == 0) + { + if ((set = single_set (after)) != NULL_RTX + && (MEM_P (SET_DEST (set)) || mem_ref (SET_SRC (set)))) + break; + + after = next_active_insn (after); + if (!after) + break; + } + + /* Add NOP if third instruction is a store. */ + if (i == 1 + && (set = single_set (after)) != NULL_RTX + && MEM_P (SET_DEST (set))) + insert_nop = true; + } + } + + /* Look for a single-word load into an odd-numbered FP register. */ + else if (sparc_fix_at697f + && NONJUMP_INSN_P (insn) + && (set = single_set (insn)) != NULL_RTX + && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4 + && mem_ref (SET_SRC (set)) + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) > 31 + && REGNO (SET_DEST (set)) % 2 != 0) + { + /* The wrong dependency is on the enclosing double register. */ + const unsigned int x = REGNO (SET_DEST (set)) - 1; + unsigned int src1, src2, dest; + int code; + + next = next_active_insn (insn); + if (!next) + break; + /* If the insn is a branch, then it cannot be problematic. */ + if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE) + continue; + + extract_insn (next); + code = INSN_CODE (next); + + switch (code) + { + case CODE_FOR_adddf3: + case CODE_FOR_subdf3: + case CODE_FOR_muldf3: + case CODE_FOR_divdf3: + dest = REGNO (recog_data.operand[0]); + src1 = REGNO (recog_data.operand[1]); + src2 = REGNO (recog_data.operand[2]); + if (src1 != src2) + { + /* Case [1-4]: + ld [address], %fx+1 + FPOPd %f{x,y}, %f{y,x}, %f{x,y} */ + if ((src1 == x || src2 == x) + && (dest == src1 || dest == src2)) + insert_nop = true; + } + else + { + /* Case 5: + ld [address], %fx+1 + FPOPd %fx, %fx, %fx */ + if (src1 == x + && dest == src1 + && (code == CODE_FOR_adddf3 || code == CODE_FOR_muldf3)) + insert_nop = true; + } + break; + + case CODE_FOR_sqrtdf2: + dest = REGNO (recog_data.operand[0]); + src1 = REGNO (recog_data.operand[1]); + /* Case 6: + ld [address], %fx+1 + fsqrtd %fx, %fx */ + if (src1 == x && dest == src1) + insert_nop = true; + break; + + default: + break; + } + } + + /* Look for a single-word load into an integer register. */ + else if (sparc_fix_ut699 + && NONJUMP_INSN_P (insn) + && (set = single_set (insn)) != NULL_RTX + && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) <= 4 + && (mem_ref (SET_SRC (set)) != NULL_RTX + || INSN_CODE (insn) == CODE_FOR_movsi_pic_gotdata_op) + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) < 32) + { + /* There is no problem if the second memory access has a data + dependency on the first single-cycle load. */ + rtx x = SET_DEST (set); + + next = next_active_insn (insn); + if (!next) + break; + /* If the insn is a branch, then it cannot be problematic. */ + if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE) + continue; + + /* Look for a second memory access to/from an integer register. */ + if ((set = single_set (next)) != NULL_RTX) + { + rtx src = SET_SRC (set); + rtx dest = SET_DEST (set); + rtx mem; + + /* LDD is affected. */ + if ((mem = mem_ref (src)) != NULL_RTX + && REG_P (dest) + && REGNO (dest) < 32 + && !reg_mentioned_p (x, XEXP (mem, 0))) + insert_nop = true; + + /* STD is *not* affected. */ + else if (MEM_P (dest) + && GET_MODE_SIZE (GET_MODE (dest)) <= 4 + && (src == CONST0_RTX (GET_MODE (dest)) + || (REG_P (src) + && REGNO (src) < 32 + && REGNO (src) != REGNO (x))) + && !reg_mentioned_p (x, XEXP (dest, 0))) + insert_nop = true; + + /* GOT accesses uses LD. */ + else if (INSN_CODE (next) == CODE_FOR_movsi_pic_gotdata_op + && !reg_mentioned_p (x, XEXP (XEXP (src, 0), 1))) + insert_nop = true; + } + } + + /* Look for a single-word load/operation into an FP register. */ + else if (sparc_fix_ut699 + && NONJUMP_INSN_P (insn) + && (set = single_set (insn)) != NULL_RTX + && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4 + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) > 31) + { + /* Number of instructions in the problematic window. */ + const int n_insns = 4; + /* The problematic combination is with the sibling FP register. */ + const unsigned int x = REGNO (SET_DEST (set)); + const unsigned int y = x ^ 1; + rtx_insn *after; + int i; + + next = next_active_insn (insn); + if (!next) + break; + /* If the insn is a branch, then it cannot be problematic. */ + if (!NONJUMP_INSN_P (next) || GET_CODE (PATTERN (next)) == SEQUENCE) + continue; + + /* Look for a second load/operation into the sibling FP register. */ + if (!((set = single_set (next)) != NULL_RTX + && GET_MODE_SIZE (GET_MODE (SET_SRC (set))) == 4 + && REG_P (SET_DEST (set)) + && REGNO (SET_DEST (set)) == y)) + continue; + + /* Look for a (possible) store from the FP register in the next N + instructions, but bail out if it is again modified or if there + is a store from the sibling FP register before this store. */ + for (after = next, i = 0; i < n_insns; i++) + { + bool branch_p; + + after = next_active_insn (after); + if (!after) + break; + + /* This is a branch with an empty delay slot. */ + if (!NONJUMP_INSN_P (after)) + { + if (++i == n_insns) + break; + branch_p = true; + after = NULL; + } + /* This is a branch with a filled delay slot. */ + else if (rtx_sequence *seq = + dyn_cast (PATTERN (after))) + { + if (++i == n_insns) + break; + branch_p = true; + after = seq->insn (1); + } + /* This is a regular instruction. */ + else + branch_p = false; + + if (after && (set = single_set (after)) != NULL_RTX) + { + const rtx src = SET_SRC (set); + const rtx dest = SET_DEST (set); + const unsigned int size = GET_MODE_SIZE (GET_MODE (dest)); + + /* If the FP register is again modified before the store, + then the store isn't affected. */ + if (REG_P (dest) + && (REGNO (dest) == x + || (REGNO (dest) == y && size == 8))) + break; + + if (MEM_P (dest) && REG_P (src)) + { + /* If there is a store from the sibling FP register + before the store, then the store is not affected. */ + if (REGNO (src) == y || (REGNO (src) == x && size == 8)) + break; + + /* Otherwise, the store is affected. */ + if (REGNO (src) == x && size == 4) + { + insert_nop = true; + break; + } + } + } + + /* If we have a branch in the first M instructions, then we + cannot see the (M+2)th instruction so we play safe. */ + if (branch_p && i <= (n_insns - 2)) + { + insert_nop = true; + break; + } + } + } + + else + next = NEXT_INSN (insn); + + if (insert_nop) + emit_insn_before (gen_nop (), next); + } + + return 0; +} + +namespace { + +const pass_data pass_data_work_around_errata = +{ + RTL_PASS, /* type */ + "errata", /* name */ + OPTGROUP_NONE, /* optinfo_flags */ + TV_MACH_DEP, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_work_around_errata : public rtl_opt_pass +{ +public: + pass_work_around_errata(gcc::context *ctxt) + : rtl_opt_pass(pass_data_work_around_errata, ctxt) + {} + + /* opt_pass methods: */ + virtual bool gate (function *) + { + return sparc_fix_at697f + || sparc_fix_ut699 || sparc_fix_ut700 || sparc_fix_gr712rc + || sparc_fix_b2bst || sparc_fix_lost_divsqrt; + } + + virtual unsigned int execute (function *) + { + return sparc_do_work_around_errata (); + } + +}; // class pass_work_around_errata + +} // anon namespace + +rtl_opt_pass * +make_pass_work_around_errata (gcc::context *ctxt) +{ + return new pass_work_around_errata (ctxt); +} + +/* Helpers for TARGET_DEBUG_OPTIONS. */ +static void +dump_target_flag_bits (const int flags) +{ + if (flags & MASK_64BIT) + fprintf (stderr, "64BIT "); + if (flags & MASK_APP_REGS) + fprintf (stderr, "APP_REGS "); + if (flags & MASK_FASTER_STRUCTS) + fprintf (stderr, "FASTER_STRUCTS "); + if (flags & MASK_FLAT) + fprintf (stderr, "FLAT "); + if (flags & MASK_FMAF) + fprintf (stderr, "FMAF "); + if (flags & MASK_FSMULD) + fprintf (stderr, "FSMULD "); + if (flags & MASK_FPU) + fprintf (stderr, "FPU "); + if (flags & MASK_HARD_QUAD) + fprintf (stderr, "HARD_QUAD "); + if (flags & MASK_POPC) + fprintf (stderr, "POPC "); + if (flags & MASK_PTR64) + fprintf (stderr, "PTR64 "); + if (flags & MASK_STACK_BIAS) + fprintf (stderr, "STACK_BIAS "); + if (flags & MASK_UNALIGNED_DOUBLES) + fprintf (stderr, "UNALIGNED_DOUBLES "); + if (flags & MASK_V8PLUS) + fprintf (stderr, "V8PLUS "); + if (flags & MASK_VIS) + fprintf (stderr, "VIS "); + if (flags & MASK_VIS2) + fprintf (stderr, "VIS2 "); + if (flags & MASK_VIS3) + fprintf (stderr, "VIS3 "); + if (flags & MASK_VIS4) + fprintf (stderr, "VIS4 "); + if (flags & MASK_VIS4B) + fprintf (stderr, "VIS4B "); + if (flags & MASK_CBCOND) + fprintf (stderr, "CBCOND "); + if (flags & MASK_DEPRECATED_V8_INSNS) + fprintf (stderr, "DEPRECATED_V8_INSNS "); + if (flags & MASK_SPARCLET) + fprintf (stderr, "SPARCLET "); + if (flags & MASK_SPARCLITE) + fprintf (stderr, "SPARCLITE "); + if (flags & MASK_V8) + fprintf (stderr, "V8 "); + if (flags & MASK_V9) + fprintf (stderr, "V9 "); +} + +static void +dump_target_flags (const char *prefix, const int flags) +{ + fprintf (stderr, "%s: (%08x) [ ", prefix, flags); + dump_target_flag_bits (flags); + fprintf(stderr, "]\n"); +} + +/* Validate and override various options, and do some machine dependent + initialization. */ + +static void +sparc_option_override (void) +{ + /* Map TARGET_CPU_DEFAULT to value for -m{cpu,tune}=. */ + static struct cpu_default { + const int cpu; + const enum sparc_processor_type processor; + } const cpu_default[] = { + /* There must be one entry here for each TARGET_CPU value. */ + { TARGET_CPU_sparc, PROCESSOR_CYPRESS }, + { TARGET_CPU_v8, PROCESSOR_V8 }, + { TARGET_CPU_supersparc, PROCESSOR_SUPERSPARC }, + { TARGET_CPU_hypersparc, PROCESSOR_HYPERSPARC }, + { TARGET_CPU_leon, PROCESSOR_LEON }, + { TARGET_CPU_leon3, PROCESSOR_LEON3 }, + { TARGET_CPU_leon3v7, PROCESSOR_LEON3V7 }, + { TARGET_CPU_sparclite, PROCESSOR_F930 }, + { TARGET_CPU_sparclite86x, PROCESSOR_SPARCLITE86X }, + { TARGET_CPU_sparclet, PROCESSOR_TSC701 }, + { TARGET_CPU_v9, PROCESSOR_V9 }, + { TARGET_CPU_ultrasparc, PROCESSOR_ULTRASPARC }, + { TARGET_CPU_ultrasparc3, PROCESSOR_ULTRASPARC3 }, + { TARGET_CPU_niagara, PROCESSOR_NIAGARA }, + { TARGET_CPU_niagara2, PROCESSOR_NIAGARA2 }, + { TARGET_CPU_niagara3, PROCESSOR_NIAGARA3 }, + { TARGET_CPU_niagara4, PROCESSOR_NIAGARA4 }, + { TARGET_CPU_niagara7, PROCESSOR_NIAGARA7 }, + { TARGET_CPU_m8, PROCESSOR_M8 }, + { -1, PROCESSOR_V7 } + }; + const struct cpu_default *def; + /* Table of values for -m{cpu,tune}=. This must match the order of + the enum processor_type in sparc-opts.h. */ + static struct cpu_table { + const char *const name; + const int disable; + const int enable; + } const cpu_table[] = { + { "v7", MASK_ISA, 0 }, + { "cypress", MASK_ISA, 0 }, + { "v8", MASK_ISA, MASK_V8 }, + /* TI TMS390Z55 supersparc */ + { "supersparc", MASK_ISA, MASK_V8 }, + { "hypersparc", MASK_ISA, MASK_V8 }, + { "leon", MASK_ISA|MASK_FSMULD, MASK_V8|MASK_LEON }, + { "leon3", MASK_ISA, MASK_V8|MASK_LEON3 }, + { "leon3v7", MASK_ISA, MASK_LEON3 }, + { "sparclite", MASK_ISA, MASK_SPARCLITE }, + /* The Fujitsu MB86930 is the original sparclite chip, with no FPU. */ + { "f930", MASK_ISA|MASK_FPU, MASK_SPARCLITE }, + /* The Fujitsu MB86934 is the recent sparclite chip, with an FPU. */ + { "f934", MASK_ISA, MASK_SPARCLITE }, + { "sparclite86x", MASK_ISA|MASK_FPU, MASK_SPARCLITE }, + { "sparclet", MASK_ISA, MASK_SPARCLET }, + /* TEMIC sparclet */ + { "tsc701", MASK_ISA, MASK_SPARCLET }, + { "v9", MASK_ISA, MASK_V9 }, + /* UltraSPARC I, II, IIi */ + { "ultrasparc", MASK_ISA, + /* Although insns using %y are deprecated, it is a clear win. */ + MASK_V9|MASK_DEPRECATED_V8_INSNS }, + /* UltraSPARC III */ + /* ??? Check if %y issue still holds true. */ + { "ultrasparc3", MASK_ISA, + MASK_V9|MASK_DEPRECATED_V8_INSNS|MASK_VIS2 }, + /* UltraSPARC T1 */ + { "niagara", MASK_ISA, + MASK_V9|MASK_DEPRECATED_V8_INSNS }, + /* UltraSPARC T2 */ + { "niagara2", MASK_ISA, + MASK_V9|MASK_POPC|MASK_VIS2 }, + /* UltraSPARC T3 */ + { "niagara3", MASK_ISA, + MASK_V9|MASK_POPC|MASK_VIS3|MASK_FMAF }, + /* UltraSPARC T4 */ + { "niagara4", MASK_ISA, + MASK_V9|MASK_POPC|MASK_VIS3|MASK_FMAF|MASK_CBCOND }, + /* UltraSPARC M7 */ + { "niagara7", MASK_ISA, + MASK_V9|MASK_POPC|MASK_VIS4|MASK_FMAF|MASK_CBCOND|MASK_SUBXC }, + /* UltraSPARC M8 */ + { "m8", MASK_ISA, + MASK_V9|MASK_POPC|MASK_VIS4B|MASK_FMAF|MASK_CBCOND|MASK_SUBXC } + }; + const struct cpu_table *cpu; + unsigned int i; + + if (sparc_debug_string != NULL) + { + const char *q; + char *p; + + p = ASTRDUP (sparc_debug_string); + while ((q = strtok (p, ",")) != NULL) + { + bool invert; + int mask; + + p = NULL; + if (*q == '!') + { + invert = true; + q++; + } + else + invert = false; + + if (! strcmp (q, "all")) + mask = MASK_DEBUG_ALL; + else if (! strcmp (q, "options")) + mask = MASK_DEBUG_OPTIONS; + else + error ("unknown %<-mdebug-%s%> switch", q); + + if (invert) + sparc_debug &= ~mask; + else + sparc_debug |= mask; + } + } + + /* Enable the FsMULd instruction by default if not explicitly specified by + the user. It may be later disabled by the CPU (explicitly or not). */ + if (TARGET_FPU && !(target_flags_explicit & MASK_FSMULD)) + target_flags |= MASK_FSMULD; + + if (TARGET_DEBUG_OPTIONS) + { + dump_target_flags("Initial target_flags", target_flags); + dump_target_flags("target_flags_explicit", target_flags_explicit); + } + +#ifdef SUBTARGET_OVERRIDE_OPTIONS + SUBTARGET_OVERRIDE_OPTIONS; +#endif + +#ifndef SPARC_BI_ARCH + /* Check for unsupported architecture size. */ + if (!TARGET_64BIT != DEFAULT_ARCH32_P) + error ("%s is not supported by this configuration", + DEFAULT_ARCH32_P ? "-m64" : "-m32"); +#endif + + /* We force all 64bit archs to use 128 bit long double */ + if (TARGET_ARCH64 && !TARGET_LONG_DOUBLE_128) + { + error ("%<-mlong-double-64%> not allowed with %<-m64%>"); + target_flags |= MASK_LONG_DOUBLE_128; + } + + /* Check that -fcall-saved-REG wasn't specified for out registers. */ + for (i = 8; i < 16; i++) + if (!call_used_regs [i]) + { + error ("%<-fcall-saved-REG%> is not supported for out registers"); + call_used_regs [i] = 1; + } + + /* Set the default CPU if no -mcpu option was specified. */ + if (!global_options_set.x_sparc_cpu_and_features) + { + for (def = &cpu_default[0]; def->cpu != -1; ++def) + if (def->cpu == TARGET_CPU_DEFAULT) + break; + gcc_assert (def->cpu != -1); + sparc_cpu_and_features = def->processor; + } + + /* Set the default CPU if no -mtune option was specified. */ + if (!global_options_set.x_sparc_cpu) + sparc_cpu = sparc_cpu_and_features; + + cpu = &cpu_table[(int) sparc_cpu_and_features]; + + if (TARGET_DEBUG_OPTIONS) + { + fprintf (stderr, "sparc_cpu_and_features: %s\n", cpu->name); + dump_target_flags ("cpu->disable", cpu->disable); + dump_target_flags ("cpu->enable", cpu->enable); + } + + target_flags &= ~cpu->disable; + target_flags |= (cpu->enable +#ifndef HAVE_AS_FMAF_HPC_VIS3 + & ~(MASK_FMAF | MASK_VIS3) +#endif +#ifndef HAVE_AS_SPARC4 + & ~MASK_CBCOND +#endif +#ifndef HAVE_AS_SPARC5_VIS4 + & ~(MASK_VIS4 | MASK_SUBXC) +#endif +#ifndef HAVE_AS_SPARC6 + & ~(MASK_VIS4B) +#endif +#ifndef HAVE_AS_LEON + & ~(MASK_LEON | MASK_LEON3) +#endif + & ~(target_flags_explicit & MASK_FEATURES) + ); + + /* FsMULd is a V8 instruction. */ + if (!TARGET_V8 && !TARGET_V9) + target_flags &= ~MASK_FSMULD; + + /* -mvis2 implies -mvis. */ + if (TARGET_VIS2) + target_flags |= MASK_VIS; + + /* -mvis3 implies -mvis2 and -mvis. */ + if (TARGET_VIS3) + target_flags |= MASK_VIS2 | MASK_VIS; + + /* -mvis4 implies -mvis3, -mvis2 and -mvis. */ + if (TARGET_VIS4) + target_flags |= MASK_VIS3 | MASK_VIS2 | MASK_VIS; + + /* -mvis4b implies -mvis4, -mvis3, -mvis2 and -mvis */ + if (TARGET_VIS4B) + target_flags |= MASK_VIS4 | MASK_VIS3 | MASK_VIS2 | MASK_VIS; + + /* Don't allow -mvis, -mvis2, -mvis3, -mvis4, -mvis4b, -mfmaf and -mfsmuld if + FPU is disabled. */ + if (!TARGET_FPU) + target_flags &= ~(MASK_VIS | MASK_VIS2 | MASK_VIS3 | MASK_VIS4 + | MASK_VIS4B | MASK_FMAF | MASK_FSMULD); + + /* -mvis assumes UltraSPARC+, so we are sure v9 instructions + are available; -m64 also implies v9. */ + if (TARGET_VIS || TARGET_ARCH64) + { + target_flags |= MASK_V9; + target_flags &= ~(MASK_V8 | MASK_SPARCLET | MASK_SPARCLITE); + } + + /* -mvis also implies -mv8plus on 32-bit. */ + if (TARGET_VIS && !TARGET_ARCH64) + target_flags |= MASK_V8PLUS; + + /* Use the deprecated v8 insns for sparc64 in 32-bit mode. */ + if (TARGET_V9 && TARGET_ARCH32) + target_flags |= MASK_DEPRECATED_V8_INSNS; + + /* V8PLUS requires V9 and makes no sense in 64-bit mode. */ + if (!TARGET_V9 || TARGET_ARCH64) + target_flags &= ~MASK_V8PLUS; + + /* Don't use stack biasing in 32-bit mode. */ + if (TARGET_ARCH32) + target_flags &= ~MASK_STACK_BIAS; + + /* Use LRA instead of reload, unless otherwise instructed. */ + if (!(target_flags_explicit & MASK_LRA)) + target_flags |= MASK_LRA; + + /* Enable applicable errata workarounds for LEON3FT. */ + if (sparc_fix_ut699 || sparc_fix_ut700 || sparc_fix_gr712rc) + { + sparc_fix_b2bst = 1; + sparc_fix_lost_divsqrt = 1; + } + + /* Disable FsMULd for the UT699 since it doesn't work correctly. */ + if (sparc_fix_ut699) + target_flags &= ~MASK_FSMULD; + +#ifdef TARGET_DEFAULT_LONG_DOUBLE_128 + if (!(target_flags_explicit & MASK_LONG_DOUBLE_128)) + target_flags |= MASK_LONG_DOUBLE_128; +#endif + + if (TARGET_DEBUG_OPTIONS) + dump_target_flags ("Final target_flags", target_flags); + + /* Set the code model if no -mcmodel option was specified. */ + if (global_options_set.x_sparc_code_model) + { + if (TARGET_ARCH32) + error ("%<-mcmodel=%> is not supported in 32-bit mode"); + } + else + { + if (TARGET_ARCH32) + sparc_code_model = CM_32; + else + sparc_code_model = SPARC_DEFAULT_CMODEL; + } + + /* Set the memory model if no -mmemory-model option was specified. */ + if (!global_options_set.x_sparc_memory_model) + { + /* Choose the memory model for the operating system. */ + enum sparc_memory_model_type os_default = SUBTARGET_DEFAULT_MEMORY_MODEL; + if (os_default != SMM_DEFAULT) + sparc_memory_model = os_default; + /* Choose the most relaxed model for the processor. */ + else if (TARGET_V9) + sparc_memory_model = SMM_RMO; + else if (TARGET_LEON3) + sparc_memory_model = SMM_TSO; + else if (TARGET_LEON) + sparc_memory_model = SMM_SC; + else if (TARGET_V8) + sparc_memory_model = SMM_PSO; + else + sparc_memory_model = SMM_SC; + } + + /* Supply a default value for align_functions. */ + if (flag_align_functions && !str_align_functions) + { + if (sparc_cpu == PROCESSOR_ULTRASPARC + || sparc_cpu == PROCESSOR_ULTRASPARC3 + || sparc_cpu == PROCESSOR_NIAGARA + || sparc_cpu == PROCESSOR_NIAGARA2 + || sparc_cpu == PROCESSOR_NIAGARA3 + || sparc_cpu == PROCESSOR_NIAGARA4) + str_align_functions = "32"; + else if (sparc_cpu == PROCESSOR_NIAGARA7 + || sparc_cpu == PROCESSOR_M8) + str_align_functions = "64"; + } + + /* Validate PCC_STRUCT_RETURN. */ + if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN) + flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1); + + /* Only use .uaxword when compiling for a 64-bit target. */ + if (!TARGET_ARCH64) + targetm.asm_out.unaligned_op.di = NULL; + + /* Set the processor costs. */ + switch (sparc_cpu) + { + case PROCESSOR_V7: + case PROCESSOR_CYPRESS: + sparc_costs = &cypress_costs; + break; + case PROCESSOR_V8: + case PROCESSOR_SPARCLITE: + case PROCESSOR_SUPERSPARC: + sparc_costs = &supersparc_costs; + break; + case PROCESSOR_F930: + case PROCESSOR_F934: + case PROCESSOR_HYPERSPARC: + case PROCESSOR_SPARCLITE86X: + sparc_costs = &hypersparc_costs; + break; + case PROCESSOR_LEON: + sparc_costs = &leon_costs; + break; + case PROCESSOR_LEON3: + case PROCESSOR_LEON3V7: + sparc_costs = &leon3_costs; + break; + case PROCESSOR_SPARCLET: + case PROCESSOR_TSC701: + sparc_costs = &sparclet_costs; + break; + case PROCESSOR_V9: + case PROCESSOR_ULTRASPARC: + sparc_costs = &ultrasparc_costs; + break; + case PROCESSOR_ULTRASPARC3: + sparc_costs = &ultrasparc3_costs; + break; + case PROCESSOR_NIAGARA: + sparc_costs = &niagara_costs; + break; + case PROCESSOR_NIAGARA2: + sparc_costs = &niagara2_costs; + break; + case PROCESSOR_NIAGARA3: + sparc_costs = &niagara3_costs; + break; + case PROCESSOR_NIAGARA4: + sparc_costs = &niagara4_costs; + break; + case PROCESSOR_NIAGARA7: + sparc_costs = &niagara7_costs; + break; + case PROCESSOR_M8: + sparc_costs = &m8_costs; + break; + case PROCESSOR_NATIVE: + gcc_unreachable (); + }; + + /* param_simultaneous_prefetches is the number of prefetches that + can run at the same time. More important, it is the threshold + defining when additional prefetches will be dropped by the + hardware. + + The UltraSPARC-III features a documented prefetch queue with a + size of 8. Additional prefetches issued in the cpu are + dropped. + + Niagara processors are different. In these processors prefetches + are handled much like regular loads. The L1 miss buffer is 32 + entries, but prefetches start getting affected when 30 entries + become occupied. That occupation could be a mix of regular loads + and prefetches though. And that buffer is shared by all threads. + Once the threshold is reached, if the core is running a single + thread the prefetch will retry. If more than one thread is + running, the prefetch will be dropped. + + All this makes it very difficult to determine how many + simultaneous prefetches can be issued simultaneously, even in a + single-threaded program. Experimental results show that setting + this parameter to 32 works well when the number of threads is not + high. */ + SET_OPTION_IF_UNSET (&global_options, &global_options_set, + param_simultaneous_prefetches, + ((sparc_cpu == PROCESSOR_ULTRASPARC + || sparc_cpu == PROCESSOR_NIAGARA + || sparc_cpu == PROCESSOR_NIAGARA2 + || sparc_cpu == PROCESSOR_NIAGARA3 + || sparc_cpu == PROCESSOR_NIAGARA4) + ? 2 + : (sparc_cpu == PROCESSOR_ULTRASPARC3 + ? 8 : ((sparc_cpu == PROCESSOR_NIAGARA7 + || sparc_cpu == PROCESSOR_M8) + ? 32 : 3)))); + + /* param_l1_cache_line_size is the size of the L1 cache line, in + bytes. + + The Oracle SPARC Architecture (previously the UltraSPARC + Architecture) specification states that when a PREFETCH[A] + instruction is executed an implementation-specific amount of data + is prefetched, and that it is at least 64 bytes long (aligned to + at least 64 bytes). + + However, this is not correct. The M7 (and implementations prior + to that) does not guarantee a 64B prefetch into a cache if the + line size is smaller. A single cache line is all that is ever + prefetched. So for the M7, where the L1D$ has 32B lines and the + L2D$ and L3 have 64B lines, a prefetch will prefetch 64B into the + L2 and L3, but only 32B are brought into the L1D$. (Assuming it + is a read_n prefetch, which is the only type which allocates to + the L1.) */ + SET_OPTION_IF_UNSET (&global_options, &global_options_set, + param_l1_cache_line_size, + (sparc_cpu == PROCESSOR_M8 ? 64 : 32)); + + /* param_l1_cache_size is the size of the L1D$ (most SPARC chips use + Hardvard level-1 caches) in kilobytes. Both UltraSPARC and + Niagara processors feature a L1D$ of 16KB. */ + SET_OPTION_IF_UNSET (&global_options, &global_options_set, + param_l1_cache_size, + ((sparc_cpu == PROCESSOR_ULTRASPARC + || sparc_cpu == PROCESSOR_ULTRASPARC3 + || sparc_cpu == PROCESSOR_NIAGARA + || sparc_cpu == PROCESSOR_NIAGARA2 + || sparc_cpu == PROCESSOR_NIAGARA3 + || sparc_cpu == PROCESSOR_NIAGARA4 + || sparc_cpu == PROCESSOR_NIAGARA7 + || sparc_cpu == PROCESSOR_M8) + ? 16 : 64)); + + /* param_l2_cache_size is the size fo the L2 in kilobytes. Note + that 512 is the default in params.def. */ + SET_OPTION_IF_UNSET (&global_options, &global_options_set, + param_l2_cache_size, + ((sparc_cpu == PROCESSOR_NIAGARA4 + || sparc_cpu == PROCESSOR_M8) + ? 128 : (sparc_cpu == PROCESSOR_NIAGARA7 + ? 256 : 512))); + + + /* Disable save slot sharing for call-clobbered registers by default. + The IRA sharing algorithm works on single registers only and this + pessimizes for double floating-point registers. */ + if (!global_options_set.x_flag_ira_share_save_slots) + flag_ira_share_save_slots = 0; + + /* Only enable REE by default in 64-bit mode where it helps to eliminate + redundant 32-to-64-bit extensions. */ + if (!global_options_set.x_flag_ree && TARGET_ARCH32) + flag_ree = 0; + + /* Do various machine dependent initializations. */ + sparc_init_modes (); + + /* Set up function hooks. */ + init_machine_status = sparc_init_machine_status; +} + +/* Miscellaneous utilities. */ + +/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move + or branch on register contents instructions. */ + +int +v9_regcmp_p (enum rtx_code code) +{ + return (code == EQ || code == NE || code == GE || code == LT + || code == LE || code == GT); +} + +/* Nonzero if OP is a floating point constant which can + be loaded into an integer register using a single + sethi instruction. */ + +int +fp_sethi_p (rtx op) +{ + if (GET_CODE (op) == CONST_DOUBLE) + { + long i; + + REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i); + return !SPARC_SIMM13_P (i) && SPARC_SETHI_P (i); + } + + return 0; +} + +/* Nonzero if OP is a floating point constant which can + be loaded into an integer register using a single + mov instruction. */ + +int +fp_mov_p (rtx op) +{ + if (GET_CODE (op) == CONST_DOUBLE) + { + long i; + + REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i); + return SPARC_SIMM13_P (i); + } + + return 0; +} + +/* Nonzero if OP is a floating point constant which can + be loaded into an integer register using a high/losum + instruction sequence. */ + +int +fp_high_losum_p (rtx op) +{ + /* The constraints calling this should only be in + SFmode move insns, so any constant which cannot + be moved using a single insn will do. */ + if (GET_CODE (op) == CONST_DOUBLE) + { + long i; + + REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), i); + return !SPARC_SIMM13_P (i) && !SPARC_SETHI_P (i); + } + + return 0; +} + +/* Return true if the address of LABEL can be loaded by means of the + mov{si,di}_pic_label_ref patterns in PIC mode. */ + +static bool +can_use_mov_pic_label_ref (rtx label) +{ + /* VxWorks does not impose a fixed gap between segments; the run-time + gap can be different from the object-file gap. We therefore can't + assume X - _GLOBAL_OFFSET_TABLE_ is a link-time constant unless we + are absolutely sure that X is in the same segment as the GOT. + Unfortunately, the flexibility of linker scripts means that we + can't be sure of that in general, so assume that GOT-relative + accesses are never valid on VxWorks. */ + if (TARGET_VXWORKS_RTP) + return false; + + /* Similarly, if the label is non-local, it might end up being placed + in a different section than the current one; now mov_pic_label_ref + requires the label and the code to be in the same section. */ + if (LABEL_REF_NONLOCAL_P (label)) + return false; + + /* Finally, if we are reordering basic blocks and partition into hot + and cold sections, this might happen for any label. */ + if (flag_reorder_blocks_and_partition) + return false; + + return true; +} + +/* Expand a move instruction. Return true if all work is done. */ + +bool +sparc_expand_move (machine_mode mode, rtx *operands) +{ + /* Handle sets of MEM first. */ + if (GET_CODE (operands[0]) == MEM) + { + /* 0 is a register (or a pair of registers) on SPARC. */ + if (register_or_zero_operand (operands[1], mode)) + return false; + + if (!reload_in_progress) + { + operands[0] = validize_mem (operands[0]); + operands[1] = force_reg (mode, operands[1]); + } + } + + /* Fix up TLS cases. */ + if (TARGET_HAVE_TLS + && CONSTANT_P (operands[1]) + && sparc_tls_referenced_p (operands [1])) + { + operands[1] = sparc_legitimize_tls_address (operands[1]); + return false; + } + + /* Fix up PIC cases. */ + if (flag_pic && CONSTANT_P (operands[1])) + { + if (pic_address_needs_scratch (operands[1])) + operands[1] = sparc_legitimize_pic_address (operands[1], NULL_RTX); + + /* We cannot use the mov{si,di}_pic_label_ref patterns in all cases. */ + if ((GET_CODE (operands[1]) == LABEL_REF + && can_use_mov_pic_label_ref (operands[1])) + || (GET_CODE (operands[1]) == CONST + && GET_CODE (XEXP (operands[1], 0)) == PLUS + && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF + && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == CONST_INT + && can_use_mov_pic_label_ref (XEXP (XEXP (operands[1], 0), 0)))) + { + if (mode == SImode) + { + emit_insn (gen_movsi_pic_label_ref (operands[0], operands[1])); + return true; + } + + if (mode == DImode) + { + emit_insn (gen_movdi_pic_label_ref (operands[0], operands[1])); + return true; + } + } + + if (symbolic_operand (operands[1], mode)) + { + operands[1] + = sparc_legitimize_pic_address (operands[1], + reload_in_progress + ? operands[0] : NULL_RTX); + return false; + } + } + + /* If we are trying to toss an integer constant into FP registers, + or loading a FP or vector constant, force it into memory. */ + if (CONSTANT_P (operands[1]) + && REG_P (operands[0]) + && (SPARC_FP_REG_P (REGNO (operands[0])) + || SCALAR_FLOAT_MODE_P (mode) + || VECTOR_MODE_P (mode))) + { + /* emit_group_store will send such bogosity to us when it is + not storing directly into memory. So fix this up to avoid + crashes in output_constant_pool. */ + if (operands [1] == const0_rtx) + operands[1] = CONST0_RTX (mode); + + /* We can clear or set to all-ones FP registers if TARGET_VIS, and + always other regs. */ + if ((TARGET_VIS || REGNO (operands[0]) < SPARC_FIRST_FP_REG) + && (const_zero_operand (operands[1], mode) + || const_all_ones_operand (operands[1], mode))) + return false; + + if (REGNO (operands[0]) < SPARC_FIRST_FP_REG + /* We are able to build any SF constant in integer registers + with at most 2 instructions. */ + && (mode == SFmode + /* And any DF constant in integer registers if needed. */ + || (mode == DFmode && !can_create_pseudo_p ()))) + return false; + + operands[1] = force_const_mem (mode, operands[1]); + if (!reload_in_progress) + operands[1] = validize_mem (operands[1]); + return false; + } + + /* Accept non-constants and valid constants unmodified. */ + if (!CONSTANT_P (operands[1]) + || GET_CODE (operands[1]) == HIGH + || input_operand (operands[1], mode)) + return false; + + switch (mode) + { + case E_QImode: + /* All QImode constants require only one insn, so proceed. */ + break; + + case E_HImode: + case E_SImode: + sparc_emit_set_const32 (operands[0], operands[1]); + return true; + + case E_DImode: + /* input_operand should have filtered out 32-bit mode. */ + sparc_emit_set_const64 (operands[0], operands[1]); + return true; + + case E_TImode: + { + rtx high, low; + /* TImode isn't available in 32-bit mode. */ + split_double (operands[1], &high, &low); + emit_insn (gen_movdi (operand_subword (operands[0], 0, 0, TImode), + high)); + emit_insn (gen_movdi (operand_subword (operands[0], 1, 0, TImode), + low)); + } + return true; + + default: + gcc_unreachable (); + } + + return false; +} + +/* Load OP1, a 32-bit constant, into OP0, a register. + We know it can't be done in one insn when we get + here, the move expander guarantees this. */ + +static void +sparc_emit_set_const32 (rtx op0, rtx op1) +{ + machine_mode mode = GET_MODE (op0); + rtx temp = op0; + + if (can_create_pseudo_p ()) + temp = gen_reg_rtx (mode); + + if (GET_CODE (op1) == CONST_INT) + { + gcc_assert (!small_int_operand (op1, mode) + && !const_high_operand (op1, mode)); + + /* Emit them as real moves instead of a HIGH/LO_SUM, + this way CSE can see everything and reuse intermediate + values if it wants. */ + emit_insn (gen_rtx_SET (temp, GEN_INT (INTVAL (op1) + & ~(HOST_WIDE_INT) 0x3ff))); + + emit_insn (gen_rtx_SET (op0, + gen_rtx_IOR (mode, temp, + GEN_INT (INTVAL (op1) & 0x3ff)))); + } + else + { + /* A symbol, emit in the traditional way. */ + emit_insn (gen_rtx_SET (temp, gen_rtx_HIGH (mode, op1))); + emit_insn (gen_rtx_SET (op0, gen_rtx_LO_SUM (mode, temp, op1))); + } +} + +/* Load OP1, a symbolic 64-bit constant, into OP0, a DImode register. + If TEMP is nonzero, we are forbidden to use any other scratch + registers. Otherwise, we are allowed to generate them as needed. + + Note that TEMP may have TImode if the code model is TARGET_CM_MEDANY + or TARGET_CM_EMBMEDANY (see the reload_indi and reload_outdi patterns). */ + +void +sparc_emit_set_symbolic_const64 (rtx op0, rtx op1, rtx temp) +{ + rtx cst, temp1, temp2, temp3, temp4, temp5; + rtx ti_temp = 0; + + /* Deal with too large offsets. */ + if (GET_CODE (op1) == CONST + && GET_CODE (XEXP (op1, 0)) == PLUS + && CONST_INT_P (cst = XEXP (XEXP (op1, 0), 1)) + && trunc_int_for_mode (INTVAL (cst), SImode) != INTVAL (cst)) + { + gcc_assert (!temp); + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + sparc_emit_set_const64 (temp2, cst); + sparc_emit_set_symbolic_const64 (temp1, XEXP (XEXP (op1, 0), 0), + NULL_RTX); + emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp1, temp2))); + return; + } + + if (temp && GET_MODE (temp) == TImode) + { + ti_temp = temp; + temp = gen_rtx_REG (DImode, REGNO (temp)); + } + + /* SPARC-V9 code model support. */ + switch (sparc_code_model) + { + case CM_MEDLOW: + /* The range spanned by all instructions in the object is less + than 2^31 bytes (2GB) and the distance from any instruction + to the location of the label _GLOBAL_OFFSET_TABLE_ is less + than 2^31 bytes (2GB). + + The executable must be in the low 4TB of the virtual address + space. + + sethi %hi(symbol), %temp1 + or %temp1, %lo(symbol), %reg */ + if (temp) + temp1 = temp; /* op0 is allowed. */ + else + temp1 = gen_reg_rtx (DImode); + + emit_insn (gen_rtx_SET (temp1, gen_rtx_HIGH (DImode, op1))); + emit_insn (gen_rtx_SET (op0, gen_rtx_LO_SUM (DImode, temp1, op1))); + break; + + case CM_MEDMID: + /* The range spanned by all instructions in the object is less + than 2^31 bytes (2GB) and the distance from any instruction + to the location of the label _GLOBAL_OFFSET_TABLE_ is less + than 2^31 bytes (2GB). + + The executable must be in the low 16TB of the virtual address + space. + + sethi %h44(symbol), %temp1 + or %temp1, %m44(symbol), %temp2 + sllx %temp2, 12, %temp3 + or %temp3, %l44(symbol), %reg */ + if (temp) + { + temp1 = op0; + temp2 = op0; + temp3 = temp; /* op0 is allowed. */ + } + else + { + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + temp3 = gen_reg_rtx (DImode); + } + + emit_insn (gen_seth44 (temp1, op1)); + emit_insn (gen_setm44 (temp2, temp1, op1)); + emit_insn (gen_rtx_SET (temp3, + gen_rtx_ASHIFT (DImode, temp2, GEN_INT (12)))); + emit_insn (gen_setl44 (op0, temp3, op1)); + break; + + case CM_MEDANY: + /* The range spanned by all instructions in the object is less + than 2^31 bytes (2GB) and the distance from any instruction + to the location of the label _GLOBAL_OFFSET_TABLE_ is less + than 2^31 bytes (2GB). + + The executable can be placed anywhere in the virtual address + space. + + sethi %hh(symbol), %temp1 + sethi %lm(symbol), %temp2 + or %temp1, %hm(symbol), %temp3 + sllx %temp3, 32, %temp4 + or %temp4, %temp2, %temp5 + or %temp5, %lo(symbol), %reg */ + if (temp) + { + /* It is possible that one of the registers we got for operands[2] + might coincide with that of operands[0] (which is why we made + it TImode). Pick the other one to use as our scratch. */ + if (rtx_equal_p (temp, op0)) + { + gcc_assert (ti_temp); + temp = gen_rtx_REG (DImode, REGNO (temp) + 1); + } + temp1 = op0; + temp2 = temp; /* op0 is _not_ allowed, see above. */ + temp3 = op0; + temp4 = op0; + temp5 = op0; + } + else + { + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + temp3 = gen_reg_rtx (DImode); + temp4 = gen_reg_rtx (DImode); + temp5 = gen_reg_rtx (DImode); + } + + emit_insn (gen_sethh (temp1, op1)); + emit_insn (gen_setlm (temp2, op1)); + emit_insn (gen_sethm (temp3, temp1, op1)); + emit_insn (gen_rtx_SET (temp4, + gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32)))); + emit_insn (gen_rtx_SET (temp5, gen_rtx_PLUS (DImode, temp4, temp2))); + emit_insn (gen_setlo (op0, temp5, op1)); + break; + + case CM_EMBMEDANY: + /* Old old old backwards compatibility kruft here. + Essentially it is MEDLOW with a fixed 64-bit + virtual base added to all data segment addresses. + Text-segment stuff is computed like MEDANY, we can't + reuse the code above because the relocation knobs + look different. + + Data segment: sethi %hi(symbol), %temp1 + add %temp1, EMBMEDANY_BASE_REG, %temp2 + or %temp2, %lo(symbol), %reg */ + if (data_segment_operand (op1, GET_MODE (op1))) + { + if (temp) + { + temp1 = temp; /* op0 is allowed. */ + temp2 = op0; + } + else + { + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + } + + emit_insn (gen_embmedany_sethi (temp1, op1)); + emit_insn (gen_embmedany_brsum (temp2, temp1)); + emit_insn (gen_embmedany_losum (op0, temp2, op1)); + } + + /* Text segment: sethi %uhi(symbol), %temp1 + sethi %hi(symbol), %temp2 + or %temp1, %ulo(symbol), %temp3 + sllx %temp3, 32, %temp4 + or %temp4, %temp2, %temp5 + or %temp5, %lo(symbol), %reg */ + else + { + if (temp) + { + /* It is possible that one of the registers we got for operands[2] + might coincide with that of operands[0] (which is why we made + it TImode). Pick the other one to use as our scratch. */ + if (rtx_equal_p (temp, op0)) + { + gcc_assert (ti_temp); + temp = gen_rtx_REG (DImode, REGNO (temp) + 1); + } + temp1 = op0; + temp2 = temp; /* op0 is _not_ allowed, see above. */ + temp3 = op0; + temp4 = op0; + temp5 = op0; + } + else + { + temp1 = gen_reg_rtx (DImode); + temp2 = gen_reg_rtx (DImode); + temp3 = gen_reg_rtx (DImode); + temp4 = gen_reg_rtx (DImode); + temp5 = gen_reg_rtx (DImode); + } + + emit_insn (gen_embmedany_textuhi (temp1, op1)); + emit_insn (gen_embmedany_texthi (temp2, op1)); + emit_insn (gen_embmedany_textulo (temp3, temp1, op1)); + emit_insn (gen_rtx_SET (temp4, + gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32)))); + emit_insn (gen_rtx_SET (temp5, gen_rtx_PLUS (DImode, temp4, temp2))); + emit_insn (gen_embmedany_textlo (op0, temp5, op1)); + } + break; + + default: + gcc_unreachable (); + } +} + +/* These avoid problems when cross compiling. If we do not + go through all this hair then the optimizer will see + invalid REG_EQUAL notes or in some cases none at all. */ +static rtx gen_safe_HIGH64 (rtx, HOST_WIDE_INT); +static rtx gen_safe_SET64 (rtx, HOST_WIDE_INT); +static rtx gen_safe_OR64 (rtx, HOST_WIDE_INT); +static rtx gen_safe_XOR64 (rtx, HOST_WIDE_INT); + +/* The optimizer is not to assume anything about exactly + which bits are set for a HIGH, they are unspecified. + Unfortunately this leads to many missed optimizations + during CSE. We mask out the non-HIGH bits, and matches + a plain movdi, to alleviate this problem. */ +static rtx +gen_safe_HIGH64 (rtx dest, HOST_WIDE_INT val) +{ + return gen_rtx_SET (dest, GEN_INT (val & ~(HOST_WIDE_INT)0x3ff)); +} + +static rtx +gen_safe_SET64 (rtx dest, HOST_WIDE_INT val) +{ + return gen_rtx_SET (dest, GEN_INT (val)); +} + +static rtx +gen_safe_OR64 (rtx src, HOST_WIDE_INT val) +{ + return gen_rtx_IOR (DImode, src, GEN_INT (val)); +} + +static rtx +gen_safe_XOR64 (rtx src, HOST_WIDE_INT val) +{ + return gen_rtx_XOR (DImode, src, GEN_INT (val)); +} + +/* Worker routines for 64-bit constant formation on arch64. + One of the key things to be doing in these emissions is + to create as many temp REGs as possible. This makes it + possible for half-built constants to be used later when + such values are similar to something required later on. + Without doing this, the optimizer cannot see such + opportunities. */ + +static void sparc_emit_set_const64_quick1 (rtx, rtx, + unsigned HOST_WIDE_INT, int); + +static void +sparc_emit_set_const64_quick1 (rtx op0, rtx temp, + unsigned HOST_WIDE_INT low_bits, int is_neg) +{ + unsigned HOST_WIDE_INT high_bits; + + if (is_neg) + high_bits = (~low_bits) & 0xffffffff; + else + high_bits = low_bits; + + emit_insn (gen_safe_HIGH64 (temp, high_bits)); + if (!is_neg) + { + emit_insn (gen_rtx_SET (op0, gen_safe_OR64 (temp, (high_bits & 0x3ff)))); + } + else + { + /* If we are XOR'ing with -1, then we should emit a one's complement + instead. This way the combiner will notice logical operations + such as ANDN later on and substitute. */ + if ((low_bits & 0x3ff) == 0x3ff) + { + emit_insn (gen_rtx_SET (op0, gen_rtx_NOT (DImode, temp))); + } + else + { + emit_insn (gen_rtx_SET (op0, + gen_safe_XOR64 (temp, + (-(HOST_WIDE_INT)0x400 + | (low_bits & 0x3ff))))); + } + } +} + +static void sparc_emit_set_const64_quick2 (rtx, rtx, unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, int); + +static void +sparc_emit_set_const64_quick2 (rtx op0, rtx temp, + unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_immediate, + int shift_count) +{ + rtx temp2 = op0; + + if ((high_bits & 0xfffffc00) != 0) + { + emit_insn (gen_safe_HIGH64 (temp, high_bits)); + if ((high_bits & ~0xfffffc00) != 0) + emit_insn (gen_rtx_SET (op0, + gen_safe_OR64 (temp, (high_bits & 0x3ff)))); + else + temp2 = temp; + } + else + { + emit_insn (gen_safe_SET64 (temp, high_bits)); + temp2 = temp; + } + + /* Now shift it up into place. */ + emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, temp2, + GEN_INT (shift_count)))); + + /* If there is a low immediate part piece, finish up by + putting that in as well. */ + if (low_immediate != 0) + emit_insn (gen_rtx_SET (op0, gen_safe_OR64 (op0, low_immediate))); +} + +static void sparc_emit_set_const64_longway (rtx, rtx, unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT); + +/* Full 64-bit constant decomposition. Even though this is the + 'worst' case, we still optimize a few things away. */ +static void +sparc_emit_set_const64_longway (rtx op0, rtx temp, + unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_bits) +{ + rtx sub_temp = op0; + + if (can_create_pseudo_p ()) + sub_temp = gen_reg_rtx (DImode); + + if ((high_bits & 0xfffffc00) != 0) + { + emit_insn (gen_safe_HIGH64 (temp, high_bits)); + if ((high_bits & ~0xfffffc00) != 0) + emit_insn (gen_rtx_SET (sub_temp, + gen_safe_OR64 (temp, (high_bits & 0x3ff)))); + else + sub_temp = temp; + } + else + { + emit_insn (gen_safe_SET64 (temp, high_bits)); + sub_temp = temp; + } + + if (can_create_pseudo_p ()) + { + rtx temp2 = gen_reg_rtx (DImode); + rtx temp3 = gen_reg_rtx (DImode); + rtx temp4 = gen_reg_rtx (DImode); + + emit_insn (gen_rtx_SET (temp4, gen_rtx_ASHIFT (DImode, sub_temp, + GEN_INT (32)))); + + emit_insn (gen_safe_HIGH64 (temp2, low_bits)); + if ((low_bits & ~0xfffffc00) != 0) + { + emit_insn (gen_rtx_SET (temp3, + gen_safe_OR64 (temp2, (low_bits & 0x3ff)))); + emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp4, temp3))); + } + else + { + emit_insn (gen_rtx_SET (op0, gen_rtx_PLUS (DImode, temp4, temp2))); + } + } + else + { + rtx low1 = GEN_INT ((low_bits >> (32 - 12)) & 0xfff); + rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12)) & 0xfff); + rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff); + int to_shift = 12; + + /* We are in the middle of reload, so this is really + painful. However we do still make an attempt to + avoid emitting truly stupid code. */ + if (low1 != const0_rtx) + { + emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp, + GEN_INT (to_shift)))); + emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low1))); + sub_temp = op0; + to_shift = 12; + } + else + { + to_shift += 12; + } + if (low2 != const0_rtx) + { + emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp, + GEN_INT (to_shift)))); + emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low2))); + sub_temp = op0; + to_shift = 8; + } + else + { + to_shift += 8; + } + emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, sub_temp, + GEN_INT (to_shift)))); + if (low3 != const0_rtx) + emit_insn (gen_rtx_SET (op0, gen_rtx_IOR (DImode, op0, low3))); + /* phew... */ + } +} + +/* Analyze a 64-bit constant for certain properties. */ +static void analyze_64bit_constant (unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, + int *, int *, int *); + +static void +analyze_64bit_constant (unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_bits, + int *hbsp, int *lbsp, int *abbasp) +{ + int lowest_bit_set, highest_bit_set, all_bits_between_are_set; + int i; + + lowest_bit_set = highest_bit_set = -1; + i = 0; + do + { + if ((lowest_bit_set == -1) + && ((low_bits >> i) & 1)) + lowest_bit_set = i; + if ((highest_bit_set == -1) + && ((high_bits >> (32 - i - 1)) & 1)) + highest_bit_set = (64 - i - 1); + } + while (++i < 32 + && ((highest_bit_set == -1) + || (lowest_bit_set == -1))); + if (i == 32) + { + i = 0; + do + { + if ((lowest_bit_set == -1) + && ((high_bits >> i) & 1)) + lowest_bit_set = i + 32; + if ((highest_bit_set == -1) + && ((low_bits >> (32 - i - 1)) & 1)) + highest_bit_set = 32 - i - 1; + } + while (++i < 32 + && ((highest_bit_set == -1) + || (lowest_bit_set == -1))); + } + /* If there are no bits set this should have gone out + as one instruction! */ + gcc_assert (lowest_bit_set != -1 && highest_bit_set != -1); + all_bits_between_are_set = 1; + for (i = lowest_bit_set; i <= highest_bit_set; i++) + { + if (i < 32) + { + if ((low_bits & (1 << i)) != 0) + continue; + } + else + { + if ((high_bits & (1 << (i - 32))) != 0) + continue; + } + all_bits_between_are_set = 0; + break; + } + *hbsp = highest_bit_set; + *lbsp = lowest_bit_set; + *abbasp = all_bits_between_are_set; +} + +static int const64_is_2insns (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT); + +static int +const64_is_2insns (unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_bits) +{ + int highest_bit_set, lowest_bit_set, all_bits_between_are_set; + + if (high_bits == 0 + || high_bits == 0xffffffff) + return 1; + + analyze_64bit_constant (high_bits, low_bits, + &highest_bit_set, &lowest_bit_set, + &all_bits_between_are_set); + + if ((highest_bit_set == 63 + || lowest_bit_set == 0) + && all_bits_between_are_set != 0) + return 1; + + if ((highest_bit_set - lowest_bit_set) < 21) + return 1; + + return 0; +} + +static unsigned HOST_WIDE_INT create_simple_focus_bits (unsigned HOST_WIDE_INT, + unsigned HOST_WIDE_INT, + int, int); + +static unsigned HOST_WIDE_INT +create_simple_focus_bits (unsigned HOST_WIDE_INT high_bits, + unsigned HOST_WIDE_INT low_bits, + int lowest_bit_set, int shift) +{ + HOST_WIDE_INT hi, lo; + + if (lowest_bit_set < 32) + { + lo = (low_bits >> lowest_bit_set) << shift; + hi = ((high_bits << (32 - lowest_bit_set)) << shift); + } + else + { + lo = 0; + hi = ((high_bits >> (lowest_bit_set - 32)) << shift); + } + gcc_assert (! (hi & lo)); + return (hi | lo); +} + +/* Here we are sure to be arch64 and this is an integer constant + being loaded into a register. Emit the most efficient + insn sequence possible. Detection of all the 1-insn cases + has been done already. */ +static void +sparc_emit_set_const64 (rtx op0, rtx op1) +{ + unsigned HOST_WIDE_INT high_bits, low_bits; + int lowest_bit_set, highest_bit_set; + int all_bits_between_are_set; + rtx temp = 0; + + /* Sanity check that we know what we are working with. */ + gcc_assert (TARGET_ARCH64 + && (GET_CODE (op0) == SUBREG + || (REG_P (op0) && ! SPARC_FP_REG_P (REGNO (op0))))); + + if (! can_create_pseudo_p ()) + temp = op0; + + if (GET_CODE (op1) != CONST_INT) + { + sparc_emit_set_symbolic_const64 (op0, op1, temp); + return; + } + + if (! temp) + temp = gen_reg_rtx (DImode); + + high_bits = ((INTVAL (op1) >> 32) & 0xffffffff); + low_bits = (INTVAL (op1) & 0xffffffff); + + /* low_bits bits 0 --> 31 + high_bits bits 32 --> 63 */ + + analyze_64bit_constant (high_bits, low_bits, + &highest_bit_set, &lowest_bit_set, + &all_bits_between_are_set); + + /* First try for a 2-insn sequence. */ + + /* These situations are preferred because the optimizer can + * do more things with them: + * 1) mov -1, %reg + * sllx %reg, shift, %reg + * 2) mov -1, %reg + * srlx %reg, shift, %reg + * 3) mov some_small_const, %reg + * sllx %reg, shift, %reg + */ + if (((highest_bit_set == 63 + || lowest_bit_set == 0) + && all_bits_between_are_set != 0) + || ((highest_bit_set - lowest_bit_set) < 12)) + { + HOST_WIDE_INT the_const = -1; + int shift = lowest_bit_set; + + if ((highest_bit_set != 63 + && lowest_bit_set != 0) + || all_bits_between_are_set == 0) + { + the_const = + create_simple_focus_bits (high_bits, low_bits, + lowest_bit_set, 0); + } + else if (lowest_bit_set == 0) + shift = -(63 - highest_bit_set); + + gcc_assert (SPARC_SIMM13_P (the_const)); + gcc_assert (shift != 0); + + emit_insn (gen_safe_SET64 (temp, the_const)); + if (shift > 0) + emit_insn (gen_rtx_SET (op0, gen_rtx_ASHIFT (DImode, temp, + GEN_INT (shift)))); + else if (shift < 0) + emit_insn (gen_rtx_SET (op0, gen_rtx_LSHIFTRT (DImode, temp, + GEN_INT (-shift)))); + return; + } + + /* Now a range of 22 or less bits set somewhere. + * 1) sethi %hi(focus_bits), %reg + * sllx %reg, shift, %reg + * 2) sethi %hi(focus_bits), %reg + * srlx %reg, shift, %reg + */ + if ((highest_bit_set - lowest_bit_set) < 21) + { + unsigned HOST_WIDE_INT focus_bits = + create_simple_focus_bits (high_bits, low_bits, + lowest_bit_set, 10); + + gcc_assert (SPARC_SETHI_P (focus_bits)); + gcc_assert (lowest_bit_set != 10); + + emit_insn (gen_safe_HIGH64 (temp, focus_bits)); + + /* If lowest_bit_set == 10 then a sethi alone could have done it. */ + if (lowest_bit_set < 10) + emit_insn (gen_rtx_SET (op0, + gen_rtx_LSHIFTRT (DImode, temp, + GEN_INT (10 - lowest_bit_set)))); + else if (lowest_bit_set > 10) + emit_insn (gen_rtx_SET (op0, + gen_rtx_ASHIFT (DImode, temp, + GEN_INT (lowest_bit_set - 10)))); + return; + } + + /* 1) sethi %hi(low_bits), %reg + * or %reg, %lo(low_bits), %reg + * 2) sethi %hi(~low_bits), %reg + * xor %reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg + */ + if (high_bits == 0 + || high_bits == 0xffffffff) + { + sparc_emit_set_const64_quick1 (op0, temp, low_bits, + (high_bits == 0xffffffff)); + return; + } + + /* Now, try 3-insn sequences. */ + + /* 1) sethi %hi(high_bits), %reg + * or %reg, %lo(high_bits), %reg + * sllx %reg, 32, %reg + */ + if (low_bits == 0) + { + sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32); + return; + } + + /* We may be able to do something quick + when the constant is negated, so try that. */ + if (const64_is_2insns ((~high_bits) & 0xffffffff, + (~low_bits) & 0xfffffc00)) + { + /* NOTE: The trailing bits get XOR'd so we need the + non-negated bits, not the negated ones. */ + unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff; + + if ((((~high_bits) & 0xffffffff) == 0 + && ((~low_bits) & 0x80000000) == 0) + || (((~high_bits) & 0xffffffff) == 0xffffffff + && ((~low_bits) & 0x80000000) != 0)) + { + unsigned HOST_WIDE_INT fast_int = (~low_bits & 0xffffffff); + + if ((SPARC_SETHI_P (fast_int) + && (~high_bits & 0xffffffff) == 0) + || SPARC_SIMM13_P (fast_int)) + emit_insn (gen_safe_SET64 (temp, fast_int)); + else + sparc_emit_set_const64 (temp, GEN_INT (fast_int)); + } + else + { + rtx negated_const; + negated_const = GEN_INT (((~low_bits) & 0xfffffc00) | + (((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32)); + sparc_emit_set_const64 (temp, negated_const); + } + + /* If we are XOR'ing with -1, then we should emit a one's complement + instead. This way the combiner will notice logical operations + such as ANDN later on and substitute. */ + if (trailing_bits == 0x3ff) + { + emit_insn (gen_rtx_SET (op0, gen_rtx_NOT (DImode, temp))); + } + else + { + emit_insn (gen_rtx_SET (op0, + gen_safe_XOR64 (temp, + (-0x400 | trailing_bits)))); + } + return; + } + + /* 1) sethi %hi(xxx), %reg + * or %reg, %lo(xxx), %reg + * sllx %reg, yyy, %reg + * + * ??? This is just a generalized version of the low_bits==0 + * thing above, FIXME... + */ + if ((highest_bit_set - lowest_bit_set) < 32) + { + unsigned HOST_WIDE_INT focus_bits = + create_simple_focus_bits (high_bits, low_bits, + lowest_bit_set, 0); + + /* We can't get here in this state. */ + gcc_assert (highest_bit_set >= 32 && lowest_bit_set < 32); + + /* So what we know is that the set bits straddle the + middle of the 64-bit word. */ + sparc_emit_set_const64_quick2 (op0, temp, + focus_bits, 0, + lowest_bit_set); + return; + } + + /* 1) sethi %hi(high_bits), %reg + * or %reg, %lo(high_bits), %reg + * sllx %reg, 32, %reg + * or %reg, low_bits, %reg + */ + if (SPARC_SIMM13_P (low_bits) && ((int)low_bits > 0)) + { + sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32); + return; + } + + /* The easiest way when all else fails, is full decomposition. */ + sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits); +} + +/* Implement TARGET_FIXED_CONDITION_CODE_REGS. */ + +static bool +sparc_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) +{ + *p1 = SPARC_ICC_REG; + *p2 = SPARC_FCC_REG; + return true; +} + +/* Implement TARGET_MIN_ARITHMETIC_PRECISION. */ + +static unsigned int +sparc_min_arithmetic_precision (void) +{ + return 32; +} + +/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, + return the mode to be used for the comparison. For floating-point, + CCFP[E]mode is used. CCNZmode should be used when the first operand + is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special + processing is needed. */ + +machine_mode +select_cc_mode (enum rtx_code op, rtx x, rtx y) +{ + if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) + { + switch (op) + { + case EQ: + case NE: + case UNORDERED: + case ORDERED: + case UNLT: + case UNLE: + case UNGT: + case UNGE: + case UNEQ: + return CCFPmode; + + case LT: + case LE: + case GT: + case GE: + case LTGT: + return CCFPEmode; + + default: + gcc_unreachable (); + } + } + else if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS + || GET_CODE (x) == NEG || GET_CODE (x) == ASHIFT) + && y == const0_rtx) + { + if (TARGET_ARCH64 && GET_MODE (x) == DImode) + return CCXNZmode; + else + return CCNZmode; + } + else + { + /* This is for the cmp_sne pattern. */ + if (GET_CODE (x) == NOT && y == constm1_rtx) + { + if (TARGET_ARCH64 && GET_MODE (x) == DImode) + return CCXCmode; + else + return CCCmode; + } + + /* This is for the [u]addvdi4_sp32 and [u]subvdi4_sp32 patterns. */ + if (!TARGET_ARCH64 && GET_MODE (x) == DImode) + { + if (GET_CODE (y) == UNSPEC + && (XINT (y, 1) == UNSPEC_ADDV + || XINT (y, 1) == UNSPEC_SUBV + || XINT (y, 1) == UNSPEC_NEGV)) + return CCVmode; + else + return CCCmode; + } + + if (TARGET_ARCH64 && GET_MODE (x) == DImode) + return CCXmode; + else + return CCmode; + } +} + +/* Emit the compare insn and return the CC reg for a CODE comparison + with operands X and Y. */ + +static rtx +gen_compare_reg_1 (enum rtx_code code, rtx x, rtx y) +{ + machine_mode mode; + rtx cc_reg; + + if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC) + return x; + + mode = SELECT_CC_MODE (code, x, y); + + /* ??? We don't have movcc patterns so we cannot generate pseudo regs for the + fcc regs (cse can't tell they're really call clobbered regs and will + remove a duplicate comparison even if there is an intervening function + call - it will then try to reload the cc reg via an int reg which is why + we need the movcc patterns). It is possible to provide the movcc + patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two + registers (say %g1,%g5) and it takes about 6 insns. A better fix would be + to tell cse that CCFPE mode registers (even pseudos) are call + clobbered. */ + + /* ??? This is an experiment. Rather than making changes to cse which may + or may not be easy/clean, we do our own cse. This is possible because + we will generate hard registers. Cse knows they're call clobbered (it + doesn't know the same thing about pseudos). If we guess wrong, no big + deal, but if we win, great! */ + + if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) +#if 1 /* experiment */ + { + int reg; + /* We cycle through the registers to ensure they're all exercised. */ + static int next_fcc_reg = 0; + /* Previous x,y for each fcc reg. */ + static rtx prev_args[4][2]; + + /* Scan prev_args for x,y. */ + for (reg = 0; reg < 4; reg++) + if (prev_args[reg][0] == x && prev_args[reg][1] == y) + break; + if (reg == 4) + { + reg = next_fcc_reg; + prev_args[reg][0] = x; + prev_args[reg][1] = y; + next_fcc_reg = (next_fcc_reg + 1) & 3; + } + cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG); + } +#else + cc_reg = gen_reg_rtx (mode); +#endif /* ! experiment */ + else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) + cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG); + else + cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG); + + /* We shouldn't get there for TFmode if !TARGET_HARD_QUAD. If we do, this + will only result in an unrecognizable insn so no point in asserting. */ + emit_insn (gen_rtx_SET (cc_reg, gen_rtx_COMPARE (mode, x, y))); + + return cc_reg; +} + + +/* Emit the compare insn and return the CC reg for the comparison in CMP. */ + +rtx +gen_compare_reg (rtx cmp) +{ + return gen_compare_reg_1 (GET_CODE (cmp), XEXP (cmp, 0), XEXP (cmp, 1)); +} + +/* This function is used for v9 only. + DEST is the target of the Scc insn. + CODE is the code for an Scc's comparison. + X and Y are the values we compare. + + This function is needed to turn + + (set (reg:SI 110) + (gt (reg:CCX 100 %icc) + (const_int 0))) + into + (set (reg:SI 110) + (gt:DI (reg:CCX 100 %icc) + (const_int 0))) + + IE: The instruction recognizer needs to see the mode of the comparison to + find the right instruction. We could use "gt:DI" right in the + define_expand, but leaving it out allows us to handle DI, SI, etc. */ + +static int +gen_v9_scc (rtx dest, enum rtx_code compare_code, rtx x, rtx y) +{ + if (! TARGET_ARCH64 + && (GET_MODE (x) == DImode + || GET_MODE (dest) == DImode)) + return 0; + + /* Try to use the movrCC insns. */ + if (TARGET_ARCH64 + && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT + && y == const0_rtx + && v9_regcmp_p (compare_code)) + { + rtx op0 = x; + rtx temp; + + /* Special case for op0 != 0. This can be done with one instruction if + dest == x. */ + + if (compare_code == NE + && GET_MODE (dest) == DImode + && rtx_equal_p (op0, dest)) + { + emit_insn (gen_rtx_SET (dest, + gen_rtx_IF_THEN_ELSE (DImode, + gen_rtx_fmt_ee (compare_code, DImode, + op0, const0_rtx), + const1_rtx, + dest))); + return 1; + } + + if (reg_overlap_mentioned_p (dest, op0)) + { + /* Handle the case where dest == x. + We "early clobber" the result. */ + op0 = gen_reg_rtx (GET_MODE (x)); + emit_move_insn (op0, x); + } + + emit_insn (gen_rtx_SET (dest, const0_rtx)); + if (GET_MODE (op0) != DImode) + { + temp = gen_reg_rtx (DImode); + convert_move (temp, op0, 0); + } + else + temp = op0; + emit_insn (gen_rtx_SET (dest, + gen_rtx_IF_THEN_ELSE (GET_MODE (dest), + gen_rtx_fmt_ee (compare_code, DImode, + temp, const0_rtx), + const1_rtx, + dest))); + return 1; + } + else + { + x = gen_compare_reg_1 (compare_code, x, y); + y = const0_rtx; + + emit_insn (gen_rtx_SET (dest, const0_rtx)); + emit_insn (gen_rtx_SET (dest, + gen_rtx_IF_THEN_ELSE (GET_MODE (dest), + gen_rtx_fmt_ee (compare_code, + GET_MODE (x), x, y), + const1_rtx, dest))); + return 1; + } +} + + +/* Emit an scc insn. For seq, sne, sgeu, and sltu, we can do this + without jumps using the addx/subx instructions. */ + +bool +emit_scc_insn (rtx operands[]) +{ + rtx tem, x, y; + enum rtx_code code; + machine_mode mode; + + /* The quad-word fp compare library routines all return nonzero to indicate + true, which is different from the equivalent libgcc routines, so we must + handle them specially here. */ + if (GET_MODE (operands[2]) == TFmode && ! TARGET_HARD_QUAD) + { + operands[1] = sparc_emit_float_lib_cmp (operands[2], operands[3], + GET_CODE (operands[1])); + operands[2] = XEXP (operands[1], 0); + operands[3] = XEXP (operands[1], 1); + } + + code = GET_CODE (operands[1]); + x = operands[2]; + y = operands[3]; + mode = GET_MODE (x); + + /* For seq/sne on v9 we use the same code as v8 (the addx/subx method has + more applications). The exception to this is "reg != 0" which can + be done in one instruction on v9 (so we do it). */ + if ((code == EQ || code == NE) && (mode == SImode || mode == DImode)) + { + if (y != const0_rtx) + x = force_reg (mode, gen_rtx_XOR (mode, x, y)); + + rtx pat = gen_rtx_SET (operands[0], + gen_rtx_fmt_ee (code, GET_MODE (operands[0]), + x, const0_rtx)); + + /* If we can use addx/subx or addxc, add a clobber for CC. */ + if (mode == SImode || (code == NE && TARGET_VIS3)) + { + rtx clobber + = gen_rtx_CLOBBER (VOIDmode, + gen_rtx_REG (mode == SImode ? CCmode : CCXmode, + SPARC_ICC_REG)); + pat = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, pat, clobber)); + } + + emit_insn (pat); + return true; + } + + /* We can do LTU in DImode using the addxc instruction with VIS3. */ + if (TARGET_ARCH64 + && mode == DImode + && !((code == LTU || code == GTU) && TARGET_VIS3) + && gen_v9_scc (operands[0], code, x, y)) + return true; + + /* We can do LTU and GEU using the addx/subx instructions too. And + for GTU/LEU, if both operands are registers swap them and fall + back to the easy case. */ + if (code == GTU || code == LEU) + { + if ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG) + && (GET_CODE (y) == REG || GET_CODE (y) == SUBREG)) + { + tem = x; + x = y; + y = tem; + code = swap_condition (code); + } + } + + if (code == LTU || code == GEU) + { + emit_insn (gen_rtx_SET (operands[0], + gen_rtx_fmt_ee (code, GET_MODE (operands[0]), + gen_compare_reg_1 (code, x, y), + const0_rtx))); + return true; + } + + /* All the posibilities to use addx/subx based sequences has been + exhausted, try for a 3 instruction sequence using v9 conditional + moves. */ + if (TARGET_V9 && gen_v9_scc (operands[0], code, x, y)) + return true; + + /* Nope, do branches. */ + return false; +} + +/* Emit a conditional jump insn for the v9 architecture using comparison code + CODE and jump target LABEL. + This function exists to take advantage of the v9 brxx insns. */ + +static void +emit_v9_brxx_insn (enum rtx_code code, rtx op0, rtx label) +{ + emit_jump_insn (gen_rtx_SET (pc_rtx, + gen_rtx_IF_THEN_ELSE (VOIDmode, + gen_rtx_fmt_ee (code, GET_MODE (op0), + op0, const0_rtx), + gen_rtx_LABEL_REF (VOIDmode, label), + pc_rtx))); +} + +/* Emit a conditional jump insn for the UA2011 architecture using + comparison code CODE and jump target LABEL. This function exists + to take advantage of the UA2011 Compare and Branch insns. */ + +static void +emit_cbcond_insn (enum rtx_code code, rtx op0, rtx op1, rtx label) +{ + rtx if_then_else; + + if_then_else = gen_rtx_IF_THEN_ELSE (VOIDmode, + gen_rtx_fmt_ee(code, GET_MODE(op0), + op0, op1), + gen_rtx_LABEL_REF (VOIDmode, label), + pc_rtx); + + emit_jump_insn (gen_rtx_SET (pc_rtx, if_then_else)); +} + +void +emit_conditional_branch_insn (rtx operands[]) +{ + /* The quad-word fp compare library routines all return nonzero to indicate + true, which is different from the equivalent libgcc routines, so we must + handle them specially here. */ + if (GET_MODE (operands[1]) == TFmode && ! TARGET_HARD_QUAD) + { + operands[0] = sparc_emit_float_lib_cmp (operands[1], operands[2], + GET_CODE (operands[0])); + operands[1] = XEXP (operands[0], 0); + operands[2] = XEXP (operands[0], 1); + } + + /* If we can tell early on that the comparison is against a constant + that won't fit in the 5-bit signed immediate field of a cbcond, + use one of the other v9 conditional branch sequences. */ + if (TARGET_CBCOND + && GET_CODE (operands[1]) == REG + && (GET_MODE (operands[1]) == SImode + || (TARGET_ARCH64 && GET_MODE (operands[1]) == DImode)) + && (GET_CODE (operands[2]) != CONST_INT + || SPARC_SIMM5_P (INTVAL (operands[2])))) + { + emit_cbcond_insn (GET_CODE (operands[0]), operands[1], operands[2], operands[3]); + return; + } + + if (TARGET_ARCH64 && operands[2] == const0_rtx + && GET_CODE (operands[1]) == REG + && GET_MODE (operands[1]) == DImode) + { + emit_v9_brxx_insn (GET_CODE (operands[0]), operands[1], operands[3]); + return; + } + + operands[1] = gen_compare_reg (operands[0]); + operands[2] = const0_rtx; + operands[0] = gen_rtx_fmt_ee (GET_CODE (operands[0]), VOIDmode, + operands[1], operands[2]); + emit_jump_insn (gen_cbranchcc4 (operands[0], operands[1], operands[2], + operands[3])); +} + + +/* Generate a DFmode part of a hard TFmode register. + REG is the TFmode hard register, LOW is 1 for the + low 64bit of the register and 0 otherwise. + */ +rtx +gen_df_reg (rtx reg, int low) +{ + int regno = REGNO (reg); + + if ((WORDS_BIG_ENDIAN == 0) ^ (low != 0)) + regno += (TARGET_ARCH64 && SPARC_INT_REG_P (regno)) ? 1 : 2; + return gen_rtx_REG (DFmode, regno); +} + +/* Generate a call to FUNC with OPERANDS. Operand 0 is the return value. + Unlike normal calls, TFmode operands are passed by reference. It is + assumed that no more than 3 operands are required. */ + +static void +emit_soft_tfmode_libcall (const char *func_name, int nargs, rtx *operands) +{ + rtx ret_slot = NULL, arg[3], func_sym; + int i; + + /* We only expect to be called for conversions, unary, and binary ops. */ + gcc_assert (nargs == 2 || nargs == 3); + + for (i = 0; i < nargs; ++i) + { + rtx this_arg = operands[i]; + rtx this_slot; + + /* TFmode arguments and return values are passed by reference. */ + if (GET_MODE (this_arg) == TFmode) + { + int force_stack_temp; + + force_stack_temp = 0; + if (TARGET_BUGGY_QP_LIB && i == 0) + force_stack_temp = 1; + + if (GET_CODE (this_arg) == MEM + && ! force_stack_temp) + { + tree expr = MEM_EXPR (this_arg); + if (expr) + mark_addressable (expr); + this_arg = XEXP (this_arg, 0); + } + else if (CONSTANT_P (this_arg) + && ! force_stack_temp) + { + this_slot = force_const_mem (TFmode, this_arg); + this_arg = XEXP (this_slot, 0); + } + else + { + this_slot = assign_stack_temp (TFmode, GET_MODE_SIZE (TFmode)); + + /* Operand 0 is the return value. We'll copy it out later. */ + if (i > 0) + emit_move_insn (this_slot, this_arg); + else + ret_slot = this_slot; + + this_arg = XEXP (this_slot, 0); + } + } + + arg[i] = this_arg; + } + + func_sym = gen_rtx_SYMBOL_REF (Pmode, func_name); + + if (GET_MODE (operands[0]) == TFmode) + { + if (nargs == 2) + emit_library_call (func_sym, LCT_NORMAL, VOIDmode, + arg[0], GET_MODE (arg[0]), + arg[1], GET_MODE (arg[1])); + else + emit_library_call (func_sym, LCT_NORMAL, VOIDmode, + arg[0], GET_MODE (arg[0]), + arg[1], GET_MODE (arg[1]), + arg[2], GET_MODE (arg[2])); + + if (ret_slot) + emit_move_insn (operands[0], ret_slot); + } + else + { + rtx ret; + + gcc_assert (nargs == 2); + + ret = emit_library_call_value (func_sym, operands[0], LCT_NORMAL, + GET_MODE (operands[0]), + arg[1], GET_MODE (arg[1])); + + if (ret != operands[0]) + emit_move_insn (operands[0], ret); + } +} + +/* Expand soft-float TFmode calls to sparc abi routines. */ + +static void +emit_soft_tfmode_binop (enum rtx_code code, rtx *operands) +{ + const char *func; + + switch (code) + { + case PLUS: + func = "_Qp_add"; + break; + case MINUS: + func = "_Qp_sub"; + break; + case MULT: + func = "_Qp_mul"; + break; + case DIV: + func = "_Qp_div"; + break; + default: + gcc_unreachable (); + } + + emit_soft_tfmode_libcall (func, 3, operands); +} + +static void +emit_soft_tfmode_unop (enum rtx_code code, rtx *operands) +{ + const char *func; + + gcc_assert (code == SQRT); + func = "_Qp_sqrt"; + + emit_soft_tfmode_libcall (func, 2, operands); +} + +static void +emit_soft_tfmode_cvt (enum rtx_code code, rtx *operands) +{ + const char *func; + + switch (code) + { + case FLOAT_EXTEND: + switch (GET_MODE (operands[1])) + { + case E_SFmode: + func = "_Qp_stoq"; + break; + case E_DFmode: + func = "_Qp_dtoq"; + break; + default: + gcc_unreachable (); + } + break; + + case FLOAT_TRUNCATE: + switch (GET_MODE (operands[0])) + { + case E_SFmode: + func = "_Qp_qtos"; + break; + case E_DFmode: + func = "_Qp_qtod"; + break; + default: + gcc_unreachable (); + } + break; + + case FLOAT: + switch (GET_MODE (operands[1])) + { + case E_SImode: + func = "_Qp_itoq"; + if (TARGET_ARCH64) + operands[1] = gen_rtx_SIGN_EXTEND (DImode, operands[1]); + break; + case E_DImode: + func = "_Qp_xtoq"; + break; + default: + gcc_unreachable (); + } + break; + + case UNSIGNED_FLOAT: + switch (GET_MODE (operands[1])) + { + case E_SImode: + func = "_Qp_uitoq"; + if (TARGET_ARCH64) + operands[1] = gen_rtx_ZERO_EXTEND (DImode, operands[1]); + break; + case E_DImode: + func = "_Qp_uxtoq"; + break; + default: + gcc_unreachable (); + } + break; + + case FIX: + switch (GET_MODE (operands[0])) + { + case E_SImode: + func = "_Qp_qtoi"; + break; + case E_DImode: + func = "_Qp_qtox"; + break; + default: + gcc_unreachable (); + } + break; + + case UNSIGNED_FIX: + switch (GET_MODE (operands[0])) + { + case E_SImode: + func = "_Qp_qtoui"; + break; + case E_DImode: + func = "_Qp_qtoux"; + break; + default: + gcc_unreachable (); + } + break; + + default: + gcc_unreachable (); + } + + emit_soft_tfmode_libcall (func, 2, operands); +} + +/* Expand a hard-float tfmode operation. All arguments must be in + registers. */ + +static void +emit_hard_tfmode_operation (enum rtx_code code, rtx *operands) +{ + rtx op, dest; + + if (GET_RTX_CLASS (code) == RTX_UNARY) + { + operands[1] = force_reg (GET_MODE (operands[1]), operands[1]); + op = gen_rtx_fmt_e (code, GET_MODE (operands[0]), operands[1]); + } + else + { + operands[1] = force_reg (GET_MODE (operands[1]), operands[1]); + operands[2] = force_reg (GET_MODE (operands[2]), operands[2]); + op = gen_rtx_fmt_ee (code, GET_MODE (operands[0]), + operands[1], operands[2]); + } + + if (register_operand (operands[0], VOIDmode)) + dest = operands[0]; + else + dest = gen_reg_rtx (GET_MODE (operands[0])); + + emit_insn (gen_rtx_SET (dest, op)); + + if (dest != operands[0]) + emit_move_insn (operands[0], dest); +} + +void +emit_tfmode_binop (enum rtx_code code, rtx *operands) +{ + if (TARGET_HARD_QUAD) + emit_hard_tfmode_operation (code, operands); + else + emit_soft_tfmode_binop (code, operands); +} + +void +emit_tfmode_unop (enum rtx_code code, rtx *operands) +{ + if (TARGET_HARD_QUAD) + emit_hard_tfmode_operation (code, operands); + else + emit_soft_tfmode_unop (code, operands); +} + +void +emit_tfmode_cvt (enum rtx_code code, rtx *operands) +{ + if (TARGET_HARD_QUAD) + emit_hard_tfmode_operation (code, operands); + else + emit_soft_tfmode_cvt (code, operands); +} + +/* Return nonzero if a branch/jump/call instruction will be emitting + nop into its delay slot. */ + +int +empty_delay_slot (rtx_insn *insn) +{ + rtx seq; + + /* If no previous instruction (should not happen), return true. */ + if (PREV_INSN (insn) == NULL) + return 1; + + seq = NEXT_INSN (PREV_INSN (insn)); + if (GET_CODE (PATTERN (seq)) == SEQUENCE) + return 0; + + return 1; +} + +/* Return nonzero if we should emit a nop after a cbcond instruction. + The cbcond instruction does not have a delay slot, however there is + a severe performance penalty if a control transfer appears right + after a cbcond. Therefore we emit a nop when we detect this + situation. */ + +int +emit_cbcond_nop (rtx_insn *insn) +{ + rtx next = next_active_insn (insn); + + if (!next) + return 1; + + if (NONJUMP_INSN_P (next) + && GET_CODE (PATTERN (next)) == SEQUENCE) + next = XVECEXP (PATTERN (next), 0, 0); + else if (CALL_P (next) + && GET_CODE (PATTERN (next)) == PARALLEL) + { + rtx delay = XVECEXP (PATTERN (next), 0, 1); + + if (GET_CODE (delay) == RETURN) + { + /* It's a sibling call. Do not emit the nop if we're going + to emit something other than the jump itself as the first + instruction of the sibcall sequence. */ + if (sparc_leaf_function_p || TARGET_FLAT) + return 0; + } + } + + if (NONJUMP_INSN_P (next)) + return 0; + + return 1; +} + +/* Return nonzero if TRIAL, an insn, can be combined with a 'restore' + instruction. RETURN_P is true if the v9 variant 'return' is to be + considered in the test too. + + TRIAL must be a SET whose destination is a REG appropriate for the + 'restore' instruction or, if RETURN_P is true, for the 'return' + instruction. */ + +static int +eligible_for_restore_insn (rtx trial, bool return_p) +{ + rtx pat = PATTERN (trial); + rtx src = SET_SRC (pat); + bool src_is_freg = false; + rtx src_reg; + + /* Since we now can do moves between float and integer registers when + VIS3 is enabled, we have to catch this case. We can allow such + moves when doing a 'return' however. */ + src_reg = src; + if (GET_CODE (src_reg) == SUBREG) + src_reg = SUBREG_REG (src_reg); + if (GET_CODE (src_reg) == REG + && SPARC_FP_REG_P (REGNO (src_reg))) + src_is_freg = true; + + /* The 'restore src,%g0,dest' pattern for word mode and below. */ + if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT + && arith_operand (src, GET_MODE (src)) + && ! src_is_freg) + { + if (TARGET_ARCH64) + return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); + else + return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode); + } + + /* The 'restore src,%g0,dest' pattern for double-word mode. */ + else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT + && arith_double_operand (src, GET_MODE (src)) + && ! src_is_freg) + return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); + + /* The 'restore src,%g0,dest' pattern for float if no FPU. */ + else if (! TARGET_FPU && register_operand (src, SFmode)) + return 1; + + /* The 'restore src,%g0,dest' pattern for double if no FPU. */ + else if (! TARGET_FPU && TARGET_ARCH64 && register_operand (src, DFmode)) + return 1; + + /* If we have the 'return' instruction, anything that does not use + local or output registers and can go into a delay slot wins. */ + else if (return_p && TARGET_V9 && !epilogue_renumber (&pat, 1)) + return 1; + + /* The 'restore src1,src2,dest' pattern for SImode. */ + else if (GET_CODE (src) == PLUS + && register_operand (XEXP (src, 0), SImode) + && arith_operand (XEXP (src, 1), SImode)) + return 1; + + /* The 'restore src1,src2,dest' pattern for DImode. */ + else if (GET_CODE (src) == PLUS + && register_operand (XEXP (src, 0), DImode) + && arith_double_operand (XEXP (src, 1), DImode)) + return 1; + + /* The 'restore src1,%lo(src2),dest' pattern. */ + else if (GET_CODE (src) == LO_SUM + && ! TARGET_CM_MEDMID + && ((register_operand (XEXP (src, 0), SImode) + && immediate_operand (XEXP (src, 1), SImode)) + || (TARGET_ARCH64 + && register_operand (XEXP (src, 0), DImode) + && immediate_operand (XEXP (src, 1), DImode)))) + return 1; + + /* The 'restore src,src,dest' pattern. */ + else if (GET_CODE (src) == ASHIFT + && (register_operand (XEXP (src, 0), SImode) + || register_operand (XEXP (src, 0), DImode)) + && XEXP (src, 1) == const1_rtx) + return 1; + + return 0; +} + +/* Return nonzero if TRIAL can go into the function return's delay slot. */ + +int +eligible_for_return_delay (rtx_insn *trial) +{ + int regno; + rtx pat; + + /* If the function uses __builtin_eh_return, the eh_return machinery + occupies the delay slot. */ + if (crtl->calls_eh_return) + return 0; + + if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE) + return 0; + + /* In the case of a leaf or flat function, anything can go into the slot. */ + if (sparc_leaf_function_p || TARGET_FLAT) + return 1; + + if (!NONJUMP_INSN_P (trial)) + return 0; + + pat = PATTERN (trial); + if (GET_CODE (pat) == PARALLEL) + { + int i; + + if (! TARGET_V9) + return 0; + for (i = XVECLEN (pat, 0) - 1; i >= 0; i--) + { + rtx expr = XVECEXP (pat, 0, i); + if (GET_CODE (expr) != SET) + return 0; + if (GET_CODE (SET_DEST (expr)) != REG) + return 0; + regno = REGNO (SET_DEST (expr)); + if (regno >= 8 && regno < 24) + return 0; + } + return !epilogue_renumber (&pat, 1); + } + + if (GET_CODE (pat) != SET) + return 0; + + if (GET_CODE (SET_DEST (pat)) != REG) + return 0; + + regno = REGNO (SET_DEST (pat)); + + /* Otherwise, only operations which can be done in tandem with + a `restore' or `return' insn can go into the delay slot. */ + if (regno >= 8 && regno < 24) + return 0; + + /* If this instruction sets up floating point register and we have a return + instruction, it can probably go in. But restore will not work + with FP_REGS. */ + if (! SPARC_INT_REG_P (regno)) + return TARGET_V9 && !epilogue_renumber (&pat, 1); + + return eligible_for_restore_insn (trial, true); +} + +/* Return nonzero if TRIAL can go into the sibling call's delay slot. */ + +int +eligible_for_sibcall_delay (rtx_insn *trial) +{ + rtx pat; + + if (get_attr_in_branch_delay (trial) == IN_BRANCH_DELAY_FALSE) + return 0; + + if (!NONJUMP_INSN_P (trial)) + return 0; + + pat = PATTERN (trial); + + if (sparc_leaf_function_p || TARGET_FLAT) + { + /* If the tail call is done using the call instruction, + we have to restore %o7 in the delay slot. */ + if (LEAF_SIBCALL_SLOT_RESERVED_P) + return 0; + + /* %g1 is used to build the function address */ + if (reg_mentioned_p (gen_rtx_REG (Pmode, 1), pat)) + return 0; + + return 1; + } + + if (GET_CODE (pat) != SET) + return 0; + + /* Otherwise, only operations which can be done in tandem with + a `restore' insn can go into the delay slot. */ + if (GET_CODE (SET_DEST (pat)) != REG + || (REGNO (SET_DEST (pat)) >= 8 && REGNO (SET_DEST (pat)) < 24) + || ! SPARC_INT_REG_P (REGNO (SET_DEST (pat)))) + return 0; + + /* If it mentions %o7, it can't go in, because sibcall will clobber it + in most cases. */ + if (reg_mentioned_p (gen_rtx_REG (Pmode, 15), pat)) + return 0; + + return eligible_for_restore_insn (trial, false); +} + +/* Determine if it's legal to put X into the constant pool. This + is not possible if X contains the address of a symbol that is + not constant (TLS) or not known at final link time (PIC). */ + +static bool +sparc_cannot_force_const_mem (machine_mode mode, rtx x) +{ + switch (GET_CODE (x)) + { + case CONST_INT: + case CONST_WIDE_INT: + case CONST_DOUBLE: + case CONST_VECTOR: + /* Accept all non-symbolic constants. */ + return false; + + case LABEL_REF: + /* Labels are OK iff we are non-PIC. */ + return flag_pic != 0; + + case SYMBOL_REF: + /* 'Naked' TLS symbol references are never OK, + non-TLS symbols are OK iff we are non-PIC. */ + if (SYMBOL_REF_TLS_MODEL (x)) + return true; + else + return flag_pic != 0; + + case CONST: + return sparc_cannot_force_const_mem (mode, XEXP (x, 0)); + case PLUS: + case MINUS: + return sparc_cannot_force_const_mem (mode, XEXP (x, 0)) + || sparc_cannot_force_const_mem (mode, XEXP (x, 1)); + case UNSPEC: + return true; + default: + gcc_unreachable (); + } +} + +/* Global Offset Table support. */ +static GTY(()) rtx got_symbol_rtx = NULL_RTX; +static GTY(()) rtx got_register_rtx = NULL_RTX; +static GTY(()) rtx got_helper_rtx = NULL_RTX; + +static GTY(()) bool got_helper_needed = false; + +/* Return the SYMBOL_REF for the Global Offset Table. */ + +static rtx +sparc_got (void) +{ + if (!got_symbol_rtx) + got_symbol_rtx = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); + + return got_symbol_rtx; +} + +/* Wrapper around the load_pcrel_sym{si,di} patterns. */ + +static rtx +gen_load_pcrel_sym (rtx op0, rtx op1, rtx op2) +{ + int orig_flag_pic = flag_pic; + rtx insn; + + /* The load_pcrel_sym{si,di} patterns require absolute addressing. */ + flag_pic = 0; + if (TARGET_ARCH64) + insn = gen_load_pcrel_symdi (op0, op1, op2, GEN_INT (REGNO (op0))); + else + insn = gen_load_pcrel_symsi (op0, op1, op2, GEN_INT (REGNO (op0))); + flag_pic = orig_flag_pic; + + return insn; +} + +/* Output the load_pcrel_sym{si,di} patterns. */ + +const char * +output_load_pcrel_sym (rtx *operands) +{ + if (flag_delayed_branch) + { + output_asm_insn ("sethi\t%%hi(%a1-4), %0", operands); + output_asm_insn ("call\t%a2", operands); + output_asm_insn (" add\t%0, %%lo(%a1+4), %0", operands); + } + else + { + output_asm_insn ("sethi\t%%hi(%a1-8), %0", operands); + output_asm_insn ("add\t%0, %%lo(%a1-4), %0", operands); + output_asm_insn ("call\t%a2", operands); + output_asm_insn (" nop", NULL); + } + + if (operands[2] == got_helper_rtx) + got_helper_needed = true; + + return ""; +} + +#ifdef HAVE_GAS_HIDDEN +# define USE_HIDDEN_LINKONCE 1 +#else +# define USE_HIDDEN_LINKONCE 0 +#endif + +/* Emit code to load the GOT register. */ + +void +load_got_register (void) +{ + rtx insn; + + if (TARGET_VXWORKS_RTP) + { + if (!got_register_rtx) + got_register_rtx = pic_offset_table_rtx; + + insn = gen_vxworks_load_got (); + } + else + { + if (!got_register_rtx) + got_register_rtx = gen_rtx_REG (Pmode, GLOBAL_OFFSET_TABLE_REGNUM); + + /* The GOT symbol is subject to a PC-relative relocation so we need a + helper function to add the PC value and thus get the final value. */ + if (!got_helper_rtx) + { + char name[32]; + + /* Skip the leading '%' as that cannot be used in a symbol name. */ + if (USE_HIDDEN_LINKONCE) + sprintf (name, "__sparc_get_pc_thunk.%s", + reg_names[REGNO (got_register_rtx)] + 1); + else + ASM_GENERATE_INTERNAL_LABEL (name, "LADDPC", + REGNO (got_register_rtx)); + + got_helper_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); + } + + insn + = gen_load_pcrel_sym (got_register_rtx, sparc_got (), got_helper_rtx); + } + + emit_insn (insn); +} + +/* Ensure that we are not using patterns that are not OK with PIC. */ + +int +check_pic (int i) +{ + rtx op; + + switch (flag_pic) + { + case 1: + op = recog_data.operand[i]; + gcc_assert (GET_CODE (op) != SYMBOL_REF + && (GET_CODE (op) != CONST + || (GET_CODE (XEXP (op, 0)) == MINUS + && XEXP (XEXP (op, 0), 0) == sparc_got () + && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST))); + /* fallthrough */ + case 2: + default: + return 1; + } +} + +/* Return true if X is an address which needs a temporary register when + reloaded while generating PIC code. */ + +int +pic_address_needs_scratch (rtx x) +{ + /* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */ + if (GET_CODE (x) == CONST + && GET_CODE (XEXP (x, 0)) == PLUS + && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF + && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT + && !SMALL_INT (XEXP (XEXP (x, 0), 1))) + return 1; + + return 0; +} + +/* Determine if a given RTX is a valid constant. We already know this + satisfies CONSTANT_P. */ + +static bool +sparc_legitimate_constant_p (machine_mode mode, rtx x) +{ + switch (GET_CODE (x)) + { + case CONST: + case SYMBOL_REF: + if (sparc_tls_referenced_p (x)) + return false; + break; + + case CONST_DOUBLE: + /* Floating point constants are generally not ok. + The only exception is 0.0 and all-ones in VIS. */ + if (TARGET_VIS + && SCALAR_FLOAT_MODE_P (mode) + && (const_zero_operand (x, mode) + || const_all_ones_operand (x, mode))) + return true; + + return false; + + case CONST_VECTOR: + /* Vector constants are generally not ok. + The only exception is 0 or -1 in VIS. */ + if (TARGET_VIS + && (const_zero_operand (x, mode) + || const_all_ones_operand (x, mode))) + return true; + + return false; + + default: + break; + } + + return true; +} + +/* Determine if a given RTX is a valid constant address. */ + +bool +constant_address_p (rtx x) +{ + switch (GET_CODE (x)) + { + case LABEL_REF: + case CONST_INT: + case HIGH: + return true; + + case CONST: + if (flag_pic && pic_address_needs_scratch (x)) + return false; + return sparc_legitimate_constant_p (Pmode, x); + + case SYMBOL_REF: + return !flag_pic && sparc_legitimate_constant_p (Pmode, x); + + default: + return false; + } +} + +/* Nonzero if the constant value X is a legitimate general operand + when generating PIC code. It is given that flag_pic is on and + that X satisfies CONSTANT_P. */ + +bool +legitimate_pic_operand_p (rtx x) +{ + if (pic_address_needs_scratch (x)) + return false; + if (sparc_tls_referenced_p (x)) + return false; + return true; +} + +/* Return true if X is a representation of the PIC register. */ + +static bool +sparc_pic_register_p (rtx x) +{ + if (!REG_P (x) || !pic_offset_table_rtx) + return false; + + if (x == pic_offset_table_rtx) + return true; + + if (!HARD_REGISTER_P (pic_offset_table_rtx) + && (HARD_REGISTER_P (x) || lra_in_progress || reload_in_progress) + && ORIGINAL_REGNO (x) == REGNO (pic_offset_table_rtx)) + return true; + + return false; +} + +#define RTX_OK_FOR_OFFSET_P(X, MODE) \ + (CONST_INT_P (X) \ + && INTVAL (X) >= -0x1000 \ + && INTVAL (X) <= (0x1000 - GET_MODE_SIZE (MODE))) + +#define RTX_OK_FOR_OLO10_P(X, MODE) \ + (CONST_INT_P (X) \ + && INTVAL (X) >= -0x1000 \ + && INTVAL (X) <= (0xc00 - GET_MODE_SIZE (MODE))) + +/* Handle the TARGET_LEGITIMATE_ADDRESS_P target hook. + + On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT + ordinarily. This changes a bit when generating PIC. */ + +static bool +sparc_legitimate_address_p (machine_mode mode, rtx addr, bool strict) +{ + rtx rs1 = NULL, rs2 = NULL, imm1 = NULL; + + if (REG_P (addr) || GET_CODE (addr) == SUBREG) + rs1 = addr; + else if (GET_CODE (addr) == PLUS) + { + rs1 = XEXP (addr, 0); + rs2 = XEXP (addr, 1); + + /* Canonicalize. REG comes first, if there are no regs, + LO_SUM comes first. */ + if (!REG_P (rs1) + && GET_CODE (rs1) != SUBREG + && (REG_P (rs2) + || GET_CODE (rs2) == SUBREG + || (GET_CODE (rs2) == LO_SUM && GET_CODE (rs1) != LO_SUM))) + { + rs1 = XEXP (addr, 1); + rs2 = XEXP (addr, 0); + } + + if ((flag_pic == 1 + && sparc_pic_register_p (rs1) + && !REG_P (rs2) + && GET_CODE (rs2) != SUBREG + && GET_CODE (rs2) != LO_SUM + && GET_CODE (rs2) != MEM + && !(GET_CODE (rs2) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs2)) + && (! symbolic_operand (rs2, VOIDmode) || mode == Pmode) + && (GET_CODE (rs2) != CONST_INT || SMALL_INT (rs2))) + || ((REG_P (rs1) + || GET_CODE (rs1) == SUBREG) + && RTX_OK_FOR_OFFSET_P (rs2, mode))) + { + imm1 = rs2; + rs2 = NULL; + } + else if ((REG_P (rs1) || GET_CODE (rs1) == SUBREG) + && (REG_P (rs2) || GET_CODE (rs2) == SUBREG)) + { + /* We prohibit REG + REG for TFmode when there are no quad move insns + and we consequently need to split. We do this because REG+REG + is not an offsettable address. If we get the situation in reload + where source and destination of a movtf pattern are both MEMs with + REG+REG address, then only one of them gets converted to an + offsettable address. */ + if (mode == TFmode + && ! (TARGET_ARCH64 && TARGET_HARD_QUAD)) + return 0; + + /* Likewise for TImode, but in all cases. */ + if (mode == TImode) + return 0; + + /* We prohibit REG + REG on ARCH32 if not optimizing for + DFmode/DImode because then mem_min_alignment is likely to be zero + after reload and the forced split would lack a matching splitter + pattern. */ + if (TARGET_ARCH32 && !optimize + && (mode == DFmode || mode == DImode)) + return 0; + } + else if (USE_AS_OFFSETABLE_LO10 + && GET_CODE (rs1) == LO_SUM + && TARGET_ARCH64 + && ! TARGET_CM_MEDMID + && RTX_OK_FOR_OLO10_P (rs2, mode)) + { + rs2 = NULL; + imm1 = XEXP (rs1, 1); + rs1 = XEXP (rs1, 0); + if (!CONSTANT_P (imm1) + || (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1))) + return 0; + } + } + else if (GET_CODE (addr) == LO_SUM) + { + rs1 = XEXP (addr, 0); + imm1 = XEXP (addr, 1); + + if (!CONSTANT_P (imm1) + || (GET_CODE (rs1) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (rs1))) + return 0; + + /* We can't allow TFmode in 32-bit mode, because an offset greater + than the alignment (8) may cause the LO_SUM to overflow. */ + if (mode == TFmode && TARGET_ARCH32) + return 0; + + /* During reload, accept the HIGH+LO_SUM construct generated by + sparc_legitimize_reload_address. */ + if (reload_in_progress + && GET_CODE (rs1) == HIGH + && XEXP (rs1, 0) == imm1) + return 1; + } + else if (GET_CODE (addr) == CONST_INT && SMALL_INT (addr)) + return 1; + else + return 0; + + if (GET_CODE (rs1) == SUBREG) + rs1 = SUBREG_REG (rs1); + if (!REG_P (rs1)) + return 0; + + if (rs2) + { + if (GET_CODE (rs2) == SUBREG) + rs2 = SUBREG_REG (rs2); + if (!REG_P (rs2)) + return 0; + } + + if (strict) + { + if (!REGNO_OK_FOR_BASE_P (REGNO (rs1)) + || (rs2 && !REGNO_OK_FOR_BASE_P (REGNO (rs2)))) + return 0; + } + else + { + if ((! SPARC_INT_REG_P (REGNO (rs1)) + && REGNO (rs1) != FRAME_POINTER_REGNUM + && REGNO (rs1) < FIRST_PSEUDO_REGISTER) + || (rs2 + && (! SPARC_INT_REG_P (REGNO (rs2)) + && REGNO (rs2) != FRAME_POINTER_REGNUM + && REGNO (rs2) < FIRST_PSEUDO_REGISTER))) + return 0; + } + return 1; +} + +/* Return the SYMBOL_REF for the tls_get_addr function. */ + +static GTY(()) rtx sparc_tls_symbol = NULL_RTX; + +static rtx +sparc_tls_get_addr (void) +{ + if (!sparc_tls_symbol) + sparc_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_addr"); + + return sparc_tls_symbol; +} + +/* Return the Global Offset Table to be used in TLS mode. */ + +static rtx +sparc_tls_got (void) +{ + /* In PIC mode, this is just the PIC offset table. */ + if (flag_pic) + { + crtl->uses_pic_offset_table = 1; + return pic_offset_table_rtx; + } + + /* In non-PIC mode, Sun as (unlike GNU as) emits PC-relative relocations for + the GOT symbol with the 32-bit ABI, so we reload the GOT register. */ + if (TARGET_SUN_TLS && TARGET_ARCH32) + { + load_got_register (); + return got_register_rtx; + } + + /* In all other cases, we load a new pseudo with the GOT symbol. */ + return copy_to_reg (sparc_got ()); +} + +/* Return true if X contains a thread-local symbol. */ + +static bool +sparc_tls_referenced_p (rtx x) +{ + if (!TARGET_HAVE_TLS) + return false; + + if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS) + x = XEXP (XEXP (x, 0), 0); + + if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x)) + return true; + + /* That's all we handle in sparc_legitimize_tls_address for now. */ + return false; +} + +/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute + this (thread-local) address. */ + +static rtx +sparc_legitimize_tls_address (rtx addr) +{ + rtx temp1, temp2, temp3, ret, o0, got; + rtx_insn *insn; + + gcc_assert (can_create_pseudo_p ()); + + if (GET_CODE (addr) == SYMBOL_REF) + /* Although the various sethi/or sequences generate SImode values, many of + them can be transformed by the linker when relaxing and, if relaxing to + local-exec, will become a sethi/xor pair, which is signed and therefore + a full DImode value in 64-bit mode. Thus we must use Pmode, lest these + values be spilled onto the stack in 64-bit mode. */ + switch (SYMBOL_REF_TLS_MODEL (addr)) + { + case TLS_MODEL_GLOBAL_DYNAMIC: + start_sequence (); + temp1 = gen_reg_rtx (Pmode); + temp2 = gen_reg_rtx (Pmode); + ret = gen_reg_rtx (Pmode); + o0 = gen_rtx_REG (Pmode, 8); + got = sparc_tls_got (); + if (TARGET_ARCH32) + { + emit_insn (gen_tgd_hi22si (temp1, addr)); + emit_insn (gen_tgd_lo10si (temp2, temp1, addr)); + emit_insn (gen_tgd_addsi (o0, got, temp2, addr)); + insn = emit_call_insn (gen_tgd_callsi (o0, sparc_tls_get_addr (), + addr, const1_rtx)); + } + else + { + emit_insn (gen_tgd_hi22di (temp1, addr)); + emit_insn (gen_tgd_lo10di (temp2, temp1, addr)); + emit_insn (gen_tgd_adddi (o0, got, temp2, addr)); + insn = emit_call_insn (gen_tgd_calldi (o0, sparc_tls_get_addr (), + addr, const1_rtx)); + } + use_reg (&CALL_INSN_FUNCTION_USAGE (insn), o0); + RTL_CONST_CALL_P (insn) = 1; + insn = get_insns (); + end_sequence (); + emit_libcall_block (insn, ret, o0, addr); + break; + + case TLS_MODEL_LOCAL_DYNAMIC: + start_sequence (); + temp1 = gen_reg_rtx (Pmode); + temp2 = gen_reg_rtx (Pmode); + temp3 = gen_reg_rtx (Pmode); + ret = gen_reg_rtx (Pmode); + o0 = gen_rtx_REG (Pmode, 8); + got = sparc_tls_got (); + if (TARGET_ARCH32) + { + emit_insn (gen_tldm_hi22si (temp1)); + emit_insn (gen_tldm_lo10si (temp2, temp1)); + emit_insn (gen_tldm_addsi (o0, got, temp2)); + insn = emit_call_insn (gen_tldm_callsi (o0, sparc_tls_get_addr (), + const1_rtx)); + } + else + { + emit_insn (gen_tldm_hi22di (temp1)); + emit_insn (gen_tldm_lo10di (temp2, temp1)); + emit_insn (gen_tldm_adddi (o0, got, temp2)); + insn = emit_call_insn (gen_tldm_calldi (o0, sparc_tls_get_addr (), + const1_rtx)); + } + use_reg (&CALL_INSN_FUNCTION_USAGE (insn), o0); + RTL_CONST_CALL_P (insn) = 1; + insn = get_insns (); + end_sequence (); + /* Attach a unique REG_EQUAL, to allow the RTL optimizers to + share the LD_BASE result with other LD model accesses. */ + emit_libcall_block (insn, temp3, o0, + gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), + UNSPEC_TLSLD_BASE)); + temp1 = gen_reg_rtx (Pmode); + temp2 = gen_reg_rtx (Pmode); + if (TARGET_ARCH32) + { + emit_insn (gen_tldo_hix22si (temp1, addr)); + emit_insn (gen_tldo_lox10si (temp2, temp1, addr)); + emit_insn (gen_tldo_addsi (ret, temp3, temp2, addr)); + } + else + { + emit_insn (gen_tldo_hix22di (temp1, addr)); + emit_insn (gen_tldo_lox10di (temp2, temp1, addr)); + emit_insn (gen_tldo_adddi (ret, temp3, temp2, addr)); + } + break; + + case TLS_MODEL_INITIAL_EXEC: + temp1 = gen_reg_rtx (Pmode); + temp2 = gen_reg_rtx (Pmode); + temp3 = gen_reg_rtx (Pmode); + got = sparc_tls_got (); + if (TARGET_ARCH32) + { + emit_insn (gen_tie_hi22si (temp1, addr)); + emit_insn (gen_tie_lo10si (temp2, temp1, addr)); + emit_insn (gen_tie_ld32 (temp3, got, temp2, addr)); + } + else + { + emit_insn (gen_tie_hi22di (temp1, addr)); + emit_insn (gen_tie_lo10di (temp2, temp1, addr)); + emit_insn (gen_tie_ld64 (temp3, got, temp2, addr)); + } + if (TARGET_SUN_TLS) + { + ret = gen_reg_rtx (Pmode); + if (TARGET_ARCH32) + emit_insn (gen_tie_addsi (ret, gen_rtx_REG (Pmode, 7), + temp3, addr)); + else + emit_insn (gen_tie_adddi (ret, gen_rtx_REG (Pmode, 7), + temp3, addr)); + } + else + ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp3); + break; + + case TLS_MODEL_LOCAL_EXEC: + temp1 = gen_reg_rtx (Pmode); + temp2 = gen_reg_rtx (Pmode); + if (TARGET_ARCH32) + { + emit_insn (gen_tle_hix22si (temp1, addr)); + emit_insn (gen_tle_lox10si (temp2, temp1, addr)); + } + else + { + emit_insn (gen_tle_hix22di (temp1, addr)); + emit_insn (gen_tle_lox10di (temp2, temp1, addr)); + } + ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp2); + break; + + default: + gcc_unreachable (); + } + + else if (GET_CODE (addr) == CONST) + { + rtx base, offset; + + gcc_assert (GET_CODE (XEXP (addr, 0)) == PLUS); + + base = sparc_legitimize_tls_address (XEXP (XEXP (addr, 0), 0)); + offset = XEXP (XEXP (addr, 0), 1); + + base = force_operand (base, NULL_RTX); + if (!(GET_CODE (offset) == CONST_INT && SMALL_INT (offset))) + offset = force_reg (Pmode, offset); + ret = gen_rtx_PLUS (Pmode, base, offset); + } + + else + gcc_unreachable (); /* for now ... */ + + return ret; +} + +/* Legitimize PIC addresses. If the address is already position-independent, + we return ORIG. Newly generated position-independent addresses go into a + reg. This is REG if nonzero, otherwise we allocate register(s) as + necessary. */ + +static rtx +sparc_legitimize_pic_address (rtx orig, rtx reg) +{ + if (GET_CODE (orig) == SYMBOL_REF + /* See the comment in sparc_expand_move. */ + || (GET_CODE (orig) == LABEL_REF && !can_use_mov_pic_label_ref (orig))) + { + bool gotdata_op = false; + rtx pic_ref, address; + rtx_insn *insn; + + if (!reg) + { + gcc_assert (can_create_pseudo_p ()); + reg = gen_reg_rtx (Pmode); + } + + if (flag_pic == 2) + { + /* If not during reload, allocate another temp reg here for loading + in the address, so that these instructions can be optimized + properly. */ + rtx temp_reg = can_create_pseudo_p () ? gen_reg_rtx (Pmode) : reg; + + /* Must put the SYMBOL_REF inside an UNSPEC here so that cse + won't get confused into thinking that these two instructions + are loading in the true address of the symbol. If in the + future a PIC rtx exists, that should be used instead. */ + if (TARGET_ARCH64) + { + emit_insn (gen_movdi_high_pic (temp_reg, orig)); + emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig)); + } + else + { + emit_insn (gen_movsi_high_pic (temp_reg, orig)); + emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig)); + } + + address = temp_reg; + gotdata_op = true; + } + else + address = orig; + + crtl->uses_pic_offset_table = 1; + if (gotdata_op) + { + if (TARGET_ARCH64) + insn = emit_insn (gen_movdi_pic_gotdata_op (reg, + pic_offset_table_rtx, + address, orig)); + else + insn = emit_insn (gen_movsi_pic_gotdata_op (reg, + pic_offset_table_rtx, + address, orig)); + } + else + { + pic_ref + = gen_const_mem (Pmode, + gen_rtx_PLUS (Pmode, + pic_offset_table_rtx, address)); + insn = emit_move_insn (reg, pic_ref); + } + + /* Put a REG_EQUAL note on this insn, so that it can be optimized + by loop. */ + set_unique_reg_note (insn, REG_EQUAL, orig); + return reg; + } + else if (GET_CODE (orig) == CONST) + { + rtx base, offset; + + if (GET_CODE (XEXP (orig, 0)) == PLUS + && sparc_pic_register_p (XEXP (XEXP (orig, 0), 0))) + return orig; + + if (!reg) + { + gcc_assert (can_create_pseudo_p ()); + reg = gen_reg_rtx (Pmode); + } + + gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS); + base = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg); + offset = sparc_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), + base == reg ? NULL_RTX : reg); + + if (GET_CODE (offset) == CONST_INT) + { + if (SMALL_INT (offset)) + return plus_constant (Pmode, base, INTVAL (offset)); + else if (can_create_pseudo_p ()) + offset = force_reg (Pmode, offset); + else + /* If we reach here, then something is seriously wrong. */ + gcc_unreachable (); + } + return gen_rtx_PLUS (Pmode, base, offset); + } + else if (GET_CODE (orig) == LABEL_REF) + /* ??? We ought to be checking that the register is live instead, in case + it is eliminated. */ + crtl->uses_pic_offset_table = 1; + + return orig; +} + +/* Try machine-dependent ways of modifying an illegitimate address X + to be legitimate. If we find one, return the new, valid address. + + OLDX is the address as it was before break_out_memory_refs was called. + In some cases it is useful to look at this to decide what needs to be done. + + MODE is the mode of the operand pointed to by X. + + On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */ + +static rtx +sparc_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, + machine_mode mode) +{ + rtx orig_x = x; + + if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT) + x = gen_rtx_PLUS (Pmode, XEXP (x, 1), + force_operand (XEXP (x, 0), NULL_RTX)); + if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == MULT) + x = gen_rtx_PLUS (Pmode, XEXP (x, 0), + force_operand (XEXP (x, 1), NULL_RTX)); + if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS) + x = gen_rtx_PLUS (Pmode, force_operand (XEXP (x, 0), NULL_RTX), + XEXP (x, 1)); + if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == PLUS) + x = gen_rtx_PLUS (Pmode, XEXP (x, 0), + force_operand (XEXP (x, 1), NULL_RTX)); + + if (x != orig_x && sparc_legitimate_address_p (mode, x, FALSE)) + return x; + + if (sparc_tls_referenced_p (x)) + x = sparc_legitimize_tls_address (x); + else if (flag_pic) + x = sparc_legitimize_pic_address (x, NULL_RTX); + else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 1))) + x = gen_rtx_PLUS (Pmode, XEXP (x, 0), + copy_to_mode_reg (Pmode, XEXP (x, 1))); + else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 0))) + x = gen_rtx_PLUS (Pmode, XEXP (x, 1), + copy_to_mode_reg (Pmode, XEXP (x, 0))); + else if (GET_CODE (x) == SYMBOL_REF + || GET_CODE (x) == CONST + || GET_CODE (x) == LABEL_REF) + x = copy_to_suggested_reg (x, NULL_RTX, Pmode); + + return x; +} + +/* Delegitimize an address that was legitimized by the above function. */ + +static rtx +sparc_delegitimize_address (rtx x) +{ + x = delegitimize_mem_from_attrs (x); + + if (GET_CODE (x) == LO_SUM) + x = XEXP (x, 1); + + if (GET_CODE (x) == UNSPEC) + switch (XINT (x, 1)) + { + case UNSPEC_MOVE_PIC: + case UNSPEC_TLSLE: + x = XVECEXP (x, 0, 0); + gcc_assert (GET_CODE (x) == SYMBOL_REF); + break; + case UNSPEC_MOVE_GOTDATA: + x = XVECEXP (x, 0, 2); + gcc_assert (GET_CODE (x) == SYMBOL_REF); + break; + default: + break; + } + + /* This is generated by mov{si,di}_pic_label_ref in PIC mode. */ + if (GET_CODE (x) == MINUS + && (XEXP (x, 0) == got_register_rtx + || sparc_pic_register_p (XEXP (x, 0)))) + { + rtx y = XEXP (x, 1); + + if (GET_CODE (y) == LO_SUM) + y = XEXP (y, 1); + + if (GET_CODE (y) == UNSPEC && XINT (y, 1) == UNSPEC_MOVE_PIC_LABEL) + { + x = XVECEXP (y, 0, 0); + gcc_assert (GET_CODE (x) == LABEL_REF + || (GET_CODE (x) == CONST + && GET_CODE (XEXP (x, 0)) == PLUS + && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF + && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)); + } + } + + return x; +} + +/* SPARC implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to + replace the input X, or the original X if no replacement is called for. + The output parameter *WIN is 1 if the calling macro should goto WIN, + 0 if it should not. + + For SPARC, we wish to handle addresses by splitting them into + HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference. + This cuts the number of extra insns by one. + + Do nothing when generating PIC code and the address is a symbolic + operand or requires a scratch register. */ + +rtx +sparc_legitimize_reload_address (rtx x, machine_mode mode, + int opnum, int type, + int ind_levels ATTRIBUTE_UNUSED, int *win) +{ + /* Decompose SImode constants into HIGH+LO_SUM. */ + if (CONSTANT_P (x) + && (mode != TFmode || TARGET_ARCH64) + && GET_MODE (x) == SImode + && GET_CODE (x) != LO_SUM + && GET_CODE (x) != HIGH + && sparc_code_model <= CM_MEDLOW + && !(flag_pic + && (symbolic_operand (x, Pmode) || pic_address_needs_scratch (x)))) + { + x = gen_rtx_LO_SUM (GET_MODE (x), gen_rtx_HIGH (GET_MODE (x), x), x); + push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, + BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, + opnum, (enum reload_type)type); + *win = 1; + return x; + } + + /* We have to recognize what we have already generated above. */ + if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == HIGH) + { + push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL, + BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, + opnum, (enum reload_type)type); + *win = 1; + return x; + } + + *win = 0; + return x; +} + +/* Return true if ADDR (a legitimate address expression) + has an effect that depends on the machine mode it is used for. + + In PIC mode, + + (mem:HI [%l7+a]) + + is not equivalent to + + (mem:QI [%l7+a]) (mem:QI [%l7+a+1]) + + because [%l7+a+1] is interpreted as the address of (a+1). */ + + +static bool +sparc_mode_dependent_address_p (const_rtx addr, + addr_space_t as ATTRIBUTE_UNUSED) +{ + if (GET_CODE (addr) == PLUS + && sparc_pic_register_p (XEXP (addr, 0)) + && symbolic_operand (XEXP (addr, 1), VOIDmode)) + return true; + + return false; +} + +/* Emit a call instruction with the pattern given by PAT. ADDR is the + address of the call target. */ + +void +sparc_emit_call_insn (rtx pat, rtx addr) +{ + rtx_insn *insn; + + insn = emit_call_insn (pat); + + /* The PIC register is live on entry to VxWorks PIC PLT entries. */ + if (TARGET_VXWORKS_RTP + && flag_pic + && GET_CODE (addr) == SYMBOL_REF + && (SYMBOL_REF_DECL (addr) + ? !targetm.binds_local_p (SYMBOL_REF_DECL (addr)) + : !SYMBOL_REF_LOCAL_P (addr))) + { + use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx); + crtl->uses_pic_offset_table = 1; + } +} + +/* Return 1 if RTX is a MEM which is known to be aligned to at + least a DESIRED byte boundary. */ + +int +mem_min_alignment (rtx mem, int desired) +{ + rtx addr, base, offset; + + /* If it's not a MEM we can't accept it. */ + if (GET_CODE (mem) != MEM) + return 0; + + /* Obviously... */ + if (!TARGET_UNALIGNED_DOUBLES + && MEM_ALIGN (mem) / BITS_PER_UNIT >= (unsigned)desired) + return 1; + + /* ??? The rest of the function predates MEM_ALIGN so + there is probably a bit of redundancy. */ + addr = XEXP (mem, 0); + base = offset = NULL_RTX; + if (GET_CODE (addr) == PLUS) + { + if (GET_CODE (XEXP (addr, 0)) == REG) + { + base = XEXP (addr, 0); + + /* What we are saying here is that if the base + REG is aligned properly, the compiler will make + sure any REG based index upon it will be so + as well. */ + if (GET_CODE (XEXP (addr, 1)) == CONST_INT) + offset = XEXP (addr, 1); + else + offset = const0_rtx; + } + } + else if (GET_CODE (addr) == REG) + { + base = addr; + offset = const0_rtx; + } + + if (base != NULL_RTX) + { + int regno = REGNO (base); + + if (regno != HARD_FRAME_POINTER_REGNUM && regno != STACK_POINTER_REGNUM) + { + /* Check if the compiler has recorded some information + about the alignment of the base REG. If reload has + completed, we already matched with proper alignments. + If not running global_alloc, reload might give us + unaligned pointer to local stack though. */ + if (((cfun != 0 + && REGNO_POINTER_ALIGN (regno) >= desired * BITS_PER_UNIT) + || (optimize && reload_completed)) + && (INTVAL (offset) & (desired - 1)) == 0) + return 1; + } + else + { + if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0) + return 1; + } + } + else if (! TARGET_UNALIGNED_DOUBLES + || CONSTANT_P (addr) + || GET_CODE (addr) == LO_SUM) + { + /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES + is true, in which case we can only assume that an access is aligned if + it is to a constant address, or the address involves a LO_SUM. */ + return 1; + } + + /* An obviously unaligned address. */ + return 0; +} + + +/* Vectors to keep interesting information about registers where it can easily + be got. We used to use the actual mode value as the bit number, but there + are more than 32 modes now. Instead we use two tables: one indexed by + hard register number, and one indexed by mode. */ + +/* The purpose of sparc_mode_class is to shrink the range of modes so that + they all fit (as bit numbers) in a 32-bit word (again). Each real mode is + mapped into one sparc_mode_class mode. */ + +enum sparc_mode_class { + H_MODE, S_MODE, D_MODE, T_MODE, O_MODE, + SF_MODE, DF_MODE, TF_MODE, OF_MODE, + CC_MODE, CCFP_MODE +}; + +/* Modes for single-word and smaller quantities. */ +#define S_MODES \ + ((1 << (int) H_MODE) | (1 << (int) S_MODE) | (1 << (int) SF_MODE)) + +/* Modes for double-word and smaller quantities. */ +#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << (int) DF_MODE)) + +/* Modes for quad-word and smaller quantities. */ +#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE)) + +/* Modes for 8-word and smaller quantities. */ +#define O_MODES (T_MODES | (1 << (int) O_MODE) | (1 << (int) OF_MODE)) + +/* Modes for single-float quantities. */ +#define SF_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE)) + +/* Modes for double-float and smaller quantities. */ +#define DF_MODES (SF_MODES | (1 << (int) D_MODE) | (1 << (int) DF_MODE)) + +/* Modes for quad-float and smaller quantities. */ +#define TF_MODES (DF_MODES | (1 << (int) TF_MODE)) + +/* Modes for quad-float pairs and smaller quantities. */ +#define OF_MODES (TF_MODES | (1 << (int) OF_MODE)) + +/* Modes for double-float only quantities. */ +#define DF_MODES_NO_S ((1 << (int) D_MODE) | (1 << (int) DF_MODE)) + +/* Modes for quad-float and double-float only quantities. */ +#define TF_MODES_NO_S (DF_MODES_NO_S | (1 << (int) TF_MODE)) + +/* Modes for quad-float pairs and double-float only quantities. */ +#define OF_MODES_NO_S (TF_MODES_NO_S | (1 << (int) OF_MODE)) + +/* Modes for condition codes. */ +#define CC_MODES (1 << (int) CC_MODE) +#define CCFP_MODES (1 << (int) CCFP_MODE) + +/* Value is 1 if register/mode pair is acceptable on sparc. + + The funny mixture of D and T modes is because integer operations + do not specially operate on tetra quantities, so non-quad-aligned + registers can hold quadword quantities (except %o4 and %i4 because + they cross fixed registers). + + ??? Note that, despite the settings, non-double-aligned parameter + registers can hold double-word quantities in 32-bit mode. */ + +/* This points to either the 32-bit or the 64-bit version. */ +static const int *hard_regno_mode_classes; + +static const int hard_32bit_mode_classes[] = { + S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, + T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, + T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, + T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, + + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, + + /* FP regs f32 to f63. Only the even numbered registers actually exist, + and none can hold SFmode/SImode values. */ + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + + /* %fcc[0123] */ + CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, + + /* %icc, %sfp, %gsr */ + CC_MODES, 0, D_MODES +}; + +static const int hard_64bit_mode_classes[] = { + D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, + O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, + T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, + O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, + + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES, + OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, + + /* FP regs f32 to f63. Only the even numbered registers actually exist, + and none can hold SFmode/SImode values. */ + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0, + + /* %fcc[0123] */ + CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, + + /* %icc, %sfp, %gsr */ + CC_MODES, 0, D_MODES +}; + +static int sparc_mode_class [NUM_MACHINE_MODES]; + +enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER]; + +static void +sparc_init_modes (void) +{ + int i; + + for (i = 0; i < NUM_MACHINE_MODES; i++) + { + machine_mode m = (machine_mode) i; + unsigned int size = GET_MODE_SIZE (m); + + switch (GET_MODE_CLASS (m)) + { + case MODE_INT: + case MODE_PARTIAL_INT: + case MODE_COMPLEX_INT: + if (size < 4) + sparc_mode_class[i] = 1 << (int) H_MODE; + else if (size == 4) + sparc_mode_class[i] = 1 << (int) S_MODE; + else if (size == 8) + sparc_mode_class[i] = 1 << (int) D_MODE; + else if (size == 16) + sparc_mode_class[i] = 1 << (int) T_MODE; + else if (size == 32) + sparc_mode_class[i] = 1 << (int) O_MODE; + else + sparc_mode_class[i] = 0; + break; + case MODE_VECTOR_INT: + if (size == 4) + sparc_mode_class[i] = 1 << (int) SF_MODE; + else if (size == 8) + sparc_mode_class[i] = 1 << (int) DF_MODE; + else + sparc_mode_class[i] = 0; + break; + case MODE_FLOAT: + case MODE_COMPLEX_FLOAT: + if (size == 4) + sparc_mode_class[i] = 1 << (int) SF_MODE; + else if (size == 8) + sparc_mode_class[i] = 1 << (int) DF_MODE; + else if (size == 16) + sparc_mode_class[i] = 1 << (int) TF_MODE; + else if (size == 32) + sparc_mode_class[i] = 1 << (int) OF_MODE; + else + sparc_mode_class[i] = 0; + break; + case MODE_CC: + if (m == CCFPmode || m == CCFPEmode) + sparc_mode_class[i] = 1 << (int) CCFP_MODE; + else + sparc_mode_class[i] = 1 << (int) CC_MODE; + break; + default: + sparc_mode_class[i] = 0; + break; + } + } + + if (TARGET_ARCH64) + hard_regno_mode_classes = hard_64bit_mode_classes; + else + hard_regno_mode_classes = hard_32bit_mode_classes; + + /* Initialize the array used by REGNO_REG_CLASS. */ + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + { + if (i < 16 && TARGET_V8PLUS) + sparc_regno_reg_class[i] = I64_REGS; + else if (i < 32 || i == FRAME_POINTER_REGNUM) + sparc_regno_reg_class[i] = GENERAL_REGS; + else if (i < 64) + sparc_regno_reg_class[i] = FP_REGS; + else if (i < 96) + sparc_regno_reg_class[i] = EXTRA_FP_REGS; + else if (i < 100) + sparc_regno_reg_class[i] = FPCC_REGS; + else + sparc_regno_reg_class[i] = NO_REGS; + } +} + +/* Return whether REGNO, a global or FP register, must be saved/restored. */ + +static inline bool +save_global_or_fp_reg_p (unsigned int regno, + int leaf_function ATTRIBUTE_UNUSED) +{ + return !call_used_or_fixed_reg_p (regno) && df_regs_ever_live_p (regno); +} + +/* Return whether the return address register (%i7) is needed. */ + +static inline bool +return_addr_reg_needed_p (int leaf_function) +{ + /* If it is live, for example because of __builtin_return_address (0). */ + if (df_regs_ever_live_p (RETURN_ADDR_REGNUM)) + return true; + + /* Otherwise, it is needed as save register if %o7 is clobbered. */ + if (!leaf_function + /* Loading the GOT register clobbers %o7. */ + || crtl->uses_pic_offset_table + || df_regs_ever_live_p (INCOMING_RETURN_ADDR_REGNUM)) + return true; + + return false; +} + +/* Return whether REGNO, a local or in register, must be saved/restored. */ + +static bool +save_local_or_in_reg_p (unsigned int regno, int leaf_function) +{ + /* General case: call-saved registers live at some point. */ + if (!call_used_or_fixed_reg_p (regno) && df_regs_ever_live_p (regno)) + return true; + + /* Frame pointer register (%fp) if needed. */ + if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) + return true; + + /* Return address register (%i7) if needed. */ + if (regno == RETURN_ADDR_REGNUM && return_addr_reg_needed_p (leaf_function)) + return true; + + /* GOT register (%l7) if needed. */ + if (got_register_rtx && regno == REGNO (got_register_rtx)) + return true; + + /* If the function accesses prior frames, the frame pointer and the return + address of the previous frame must be saved on the stack. */ + if (crtl->accesses_prior_frames + && (regno == HARD_FRAME_POINTER_REGNUM || regno == RETURN_ADDR_REGNUM)) + return true; + + return false; +} + +/* Compute the frame size required by the function. This function is called + during the reload pass and also by sparc_expand_prologue. */ + +static HOST_WIDE_INT +sparc_compute_frame_size (HOST_WIDE_INT size, int leaf_function) +{ + HOST_WIDE_INT frame_size, apparent_frame_size; + int args_size, n_global_fp_regs = 0; + bool save_local_in_regs_p = false; + unsigned int i; + + /* If the function allocates dynamic stack space, the dynamic offset is + computed early and contains REG_PARM_STACK_SPACE, so we need to cope. */ + if (leaf_function && !cfun->calls_alloca) + args_size = 0; + else + args_size = crtl->outgoing_args_size + REG_PARM_STACK_SPACE (cfun->decl); + + /* Calculate space needed for global registers. */ + if (TARGET_ARCH64) + { + for (i = 0; i < 8; i++) + if (save_global_or_fp_reg_p (i, 0)) + n_global_fp_regs += 2; + } + else + { + for (i = 0; i < 8; i += 2) + if (save_global_or_fp_reg_p (i, 0) + || save_global_or_fp_reg_p (i + 1, 0)) + n_global_fp_regs += 2; + } + + /* In the flat window model, find out which local and in registers need to + be saved. We don't reserve space in the current frame for them as they + will be spilled into the register window save area of the caller's frame. + However, as soon as we use this register window save area, we must create + that of the current frame to make it the live one. */ + if (TARGET_FLAT) + for (i = 16; i < 32; i++) + if (save_local_or_in_reg_p (i, leaf_function)) + { + save_local_in_regs_p = true; + break; + } + + /* Calculate space needed for FP registers. */ + for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2) + if (save_global_or_fp_reg_p (i, 0) || save_global_or_fp_reg_p (i + 1, 0)) + n_global_fp_regs += 2; + + if (size == 0 + && n_global_fp_regs == 0 + && args_size == 0 + && !save_local_in_regs_p) + frame_size = apparent_frame_size = 0; + else + { + /* Start from the apparent frame size. */ + apparent_frame_size = ROUND_UP (size, 8) + n_global_fp_regs * 4; + + /* We need to add the size of the outgoing argument area. */ + frame_size = apparent_frame_size + ROUND_UP (args_size, 8); + + /* And that of the register window save area. */ + frame_size += FIRST_PARM_OFFSET (cfun->decl); + + /* Finally, bump to the appropriate alignment. */ + frame_size = SPARC_STACK_ALIGN (frame_size); + } + + /* Set up values for use in prologue and epilogue. */ + sparc_frame_size = frame_size; + sparc_apparent_frame_size = apparent_frame_size; + sparc_n_global_fp_regs = n_global_fp_regs; + sparc_save_local_in_regs_p = save_local_in_regs_p; + + return frame_size; +} + +/* Implement the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET. */ + +int +sparc_initial_elimination_offset (int to) +{ + int offset; + + if (to == STACK_POINTER_REGNUM) + offset = sparc_compute_frame_size (get_frame_size (), crtl->is_leaf); + else + offset = 0; + + offset += SPARC_STACK_BIAS; + return offset; +} + +/* Output any necessary .register pseudo-ops. */ + +void +sparc_output_scratch_registers (FILE *file ATTRIBUTE_UNUSED) +{ + int i; + + if (TARGET_ARCH32) + return; + + /* Check if %g[2367] were used without + .register being printed for them already. */ + for (i = 2; i < 8; i++) + { + if (df_regs_ever_live_p (i) + && ! sparc_hard_reg_printed [i]) + { + sparc_hard_reg_printed [i] = 1; + /* %g7 is used as TLS base register, use #ignore + for it instead of #scratch. */ + fprintf (file, "\t.register\t%%g%d, #%s\n", i, + i == 7 ? "ignore" : "scratch"); + } + if (i == 3) i = 5; + } +} + +#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) + +#if PROBE_INTERVAL > 4096 +#error Cannot use indexed addressing mode for stack probing +#endif + +/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE, + inclusive. These are offsets from the current stack pointer. + + Note that we don't use the REG+REG addressing mode for the probes because + of the stack bias in 64-bit mode. And it doesn't really buy us anything + so the advantages of having a single code win here. */ + +static void +sparc_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size) +{ + rtx g1 = gen_rtx_REG (Pmode, 1); + + /* See if we have a constant small number of probes to generate. If so, + that's the easy case. */ + if (size <= PROBE_INTERVAL) + { + emit_move_insn (g1, GEN_INT (first)); + emit_insn (gen_rtx_SET (g1, + gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); + emit_stack_probe (plus_constant (Pmode, g1, -size)); + } + + /* The run-time loop is made up of 9 insns in the generic case while the + compile-time loop is made up of 4+2*(n-2) insns for n # of intervals. */ + else if (size <= 4 * PROBE_INTERVAL) + { + HOST_WIDE_INT i; + + emit_move_insn (g1, GEN_INT (first + PROBE_INTERVAL)); + emit_insn (gen_rtx_SET (g1, + gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); + emit_stack_probe (g1); + + /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 2 until + it exceeds SIZE. If only two probes are needed, this will not + generate any code. Then probe at FIRST + SIZE. */ + for (i = 2 * PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) + { + emit_insn (gen_rtx_SET (g1, + plus_constant (Pmode, g1, -PROBE_INTERVAL))); + emit_stack_probe (g1); + } + + emit_stack_probe (plus_constant (Pmode, g1, + (i - PROBE_INTERVAL) - size)); + } + + /* Otherwise, do the same as above, but in a loop. Note that we must be + extra careful with variables wrapping around because we might be at + the very top (or the very bottom) of the address space and we have + to be able to handle this case properly; in particular, we use an + equality test for the loop condition. */ + else + { + HOST_WIDE_INT rounded_size; + rtx g4 = gen_rtx_REG (Pmode, 4); + + emit_move_insn (g1, GEN_INT (first)); + + + /* Step 1: round SIZE to the previous multiple of the interval. */ + + rounded_size = ROUND_DOWN (size, PROBE_INTERVAL); + emit_move_insn (g4, GEN_INT (rounded_size)); + + + /* Step 2: compute initial and final value of the loop counter. */ + + /* TEST_ADDR = SP + FIRST. */ + emit_insn (gen_rtx_SET (g1, + gen_rtx_MINUS (Pmode, stack_pointer_rtx, g1))); + + /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */ + emit_insn (gen_rtx_SET (g4, gen_rtx_MINUS (Pmode, g1, g4))); + + + /* Step 3: the loop + + while (TEST_ADDR != LAST_ADDR) + { + TEST_ADDR = TEST_ADDR + PROBE_INTERVAL + probe at TEST_ADDR + } + + probes at FIRST + N * PROBE_INTERVAL for values of N from 1 + until it is equal to ROUNDED_SIZE. */ + + if (TARGET_ARCH64) + emit_insn (gen_probe_stack_rangedi (g1, g1, g4)); + else + emit_insn (gen_probe_stack_rangesi (g1, g1, g4)); + + + /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time + that SIZE is equal to ROUNDED_SIZE. */ + + if (size != rounded_size) + emit_stack_probe (plus_constant (Pmode, g4, rounded_size - size)); + } + + /* Make sure nothing is scheduled before we are done. */ + emit_insn (gen_blockage ()); +} + +/* Probe a range of stack addresses from REG1 to REG2 inclusive. These are + absolute addresses. */ + +const char * +output_probe_stack_range (rtx reg1, rtx reg2) +{ + static int labelno = 0; + char loop_lab[32]; + rtx xops[2]; + + ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++); + + /* Loop. */ + ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); + + /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ + xops[0] = reg1; + xops[1] = GEN_INT (-PROBE_INTERVAL); + output_asm_insn ("add\t%0, %1, %0", xops); + + /* Test if TEST_ADDR == LAST_ADDR. */ + xops[1] = reg2; + output_asm_insn ("cmp\t%0, %1", xops); + + /* Probe at TEST_ADDR and branch. */ + if (TARGET_ARCH64) + fputs ("\tbne,pt\t%xcc,", asm_out_file); + else + fputs ("\tbne\t", asm_out_file); + assemble_name_raw (asm_out_file, loop_lab); + fputc ('\n', asm_out_file); + xops[1] = GEN_INT (SPARC_STACK_BIAS); + output_asm_insn (" st\t%%g0, [%0+%1]", xops); + + return ""; +} + +/* Emit code to save/restore registers from LOW to HIGH at BASE+OFFSET as + needed. LOW is supposed to be double-word aligned for 32-bit registers. + SAVE_P decides whether a register must be saved/restored. ACTION_TRUE + is the action to be performed if SAVE_P returns true and ACTION_FALSE + the action to be performed if it returns false. Return the new offset. */ + +typedef bool (*sorr_pred_t) (unsigned int, int); +typedef enum { SORR_NONE, SORR_ADVANCE, SORR_SAVE, SORR_RESTORE } sorr_act_t; + +static int +emit_save_or_restore_regs (unsigned int low, unsigned int high, rtx base, + int offset, int leaf_function, sorr_pred_t save_p, + sorr_act_t action_true, sorr_act_t action_false) +{ + unsigned int i; + rtx mem; + rtx_insn *insn; + + if (TARGET_ARCH64 && high <= 32) + { + int fp_offset = -1; + + for (i = low; i < high; i++) + { + if (save_p (i, leaf_function)) + { + mem = gen_frame_mem (DImode, plus_constant (Pmode, + base, offset)); + if (action_true == SORR_SAVE) + { + insn = emit_move_insn (mem, gen_rtx_REG (DImode, i)); + RTX_FRAME_RELATED_P (insn) = 1; + } + else /* action_true == SORR_RESTORE */ + { + /* The frame pointer must be restored last since its old + value may be used as base address for the frame. This + is problematic in 64-bit mode only because of the lack + of double-word load instruction. */ + if (i == HARD_FRAME_POINTER_REGNUM) + fp_offset = offset; + else + emit_move_insn (gen_rtx_REG (DImode, i), mem); + } + offset += 8; + } + else if (action_false == SORR_ADVANCE) + offset += 8; + } + + if (fp_offset >= 0) + { + mem = gen_frame_mem (DImode, plus_constant (Pmode, base, fp_offset)); + emit_move_insn (hard_frame_pointer_rtx, mem); + } + } + else + { + for (i = low; i < high; i += 2) + { + bool reg0 = save_p (i, leaf_function); + bool reg1 = save_p (i + 1, leaf_function); + machine_mode mode; + int regno; + + if (reg0 && reg1) + { + mode = SPARC_INT_REG_P (i) ? E_DImode : E_DFmode; + regno = i; + } + else if (reg0) + { + mode = SPARC_INT_REG_P (i) ? E_SImode : E_SFmode; + regno = i; + } + else if (reg1) + { + mode = SPARC_INT_REG_P (i) ? E_SImode : E_SFmode; + regno = i + 1; + offset += 4; + } + else + { + if (action_false == SORR_ADVANCE) + offset += 8; + continue; + } + + mem = gen_frame_mem (mode, plus_constant (Pmode, base, offset)); + if (action_true == SORR_SAVE) + { + insn = emit_move_insn (mem, gen_rtx_REG (mode, regno)); + RTX_FRAME_RELATED_P (insn) = 1; + if (mode == DImode) + { + rtx set1, set2; + mem = gen_frame_mem (SImode, plus_constant (Pmode, base, + offset)); + set1 = gen_rtx_SET (mem, gen_rtx_REG (SImode, regno)); + RTX_FRAME_RELATED_P (set1) = 1; + mem + = gen_frame_mem (SImode, plus_constant (Pmode, base, + offset + 4)); + set2 = gen_rtx_SET (mem, gen_rtx_REG (SImode, regno + 1)); + RTX_FRAME_RELATED_P (set2) = 1; + add_reg_note (insn, REG_FRAME_RELATED_EXPR, + gen_rtx_PARALLEL (VOIDmode, + gen_rtvec (2, set1, set2))); + } + } + else /* action_true == SORR_RESTORE */ + emit_move_insn (gen_rtx_REG (mode, regno), mem); + + /* Bump and round down to double word + in case we already bumped by 4. */ + offset = ROUND_DOWN (offset + 8, 8); + } + } + + return offset; +} + +/* Emit code to adjust BASE to OFFSET. Return the new base. */ + +static rtx +emit_adjust_base_to_offset (rtx base, int offset) +{ + /* ??? This might be optimized a little as %g1 might already have a + value close enough that a single add insn will do. */ + /* ??? Although, all of this is probably only a temporary fix because + if %g1 can hold a function result, then sparc_expand_epilogue will + lose (the result will be clobbered). */ + rtx new_base = gen_rtx_REG (Pmode, 1); + emit_move_insn (new_base, GEN_INT (offset)); + emit_insn (gen_rtx_SET (new_base, gen_rtx_PLUS (Pmode, base, new_base))); + return new_base; +} + +/* Emit code to save/restore call-saved global and FP registers. */ + +static void +emit_save_or_restore_global_fp_regs (rtx base, int offset, sorr_act_t action) +{ + if (offset < -4096 || offset + sparc_n_global_fp_regs * 4 > 4095) + { + base = emit_adjust_base_to_offset (base, offset); + offset = 0; + } + + offset + = emit_save_or_restore_regs (0, 8, base, offset, 0, + save_global_or_fp_reg_p, action, SORR_NONE); + emit_save_or_restore_regs (32, TARGET_V9 ? 96 : 64, base, offset, 0, + save_global_or_fp_reg_p, action, SORR_NONE); +} + +/* Emit code to save/restore call-saved local and in registers. */ + +static void +emit_save_or_restore_local_in_regs (rtx base, int offset, sorr_act_t action) +{ + if (offset < -4096 || offset + 16 * UNITS_PER_WORD > 4095) + { + base = emit_adjust_base_to_offset (base, offset); + offset = 0; + } + + emit_save_or_restore_regs (16, 32, base, offset, sparc_leaf_function_p, + save_local_or_in_reg_p, action, SORR_ADVANCE); +} + +/* Emit a window_save insn. */ + +static rtx_insn * +emit_window_save (rtx increment) +{ + rtx_insn *insn = emit_insn (gen_window_save (increment)); + RTX_FRAME_RELATED_P (insn) = 1; + + /* The incoming return address (%o7) is saved in %i7. */ + add_reg_note (insn, REG_CFA_REGISTER, + gen_rtx_SET (gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM), + gen_rtx_REG (Pmode, + INCOMING_RETURN_ADDR_REGNUM))); + + /* The window save event. */ + add_reg_note (insn, REG_CFA_WINDOW_SAVE, const0_rtx); + + /* The CFA is %fp, the hard frame pointer. */ + add_reg_note (insn, REG_CFA_DEF_CFA, + plus_constant (Pmode, hard_frame_pointer_rtx, + INCOMING_FRAME_SP_OFFSET)); + + return insn; +} + +/* Generate an increment for the stack pointer. */ + +static rtx +gen_stack_pointer_inc (rtx increment) +{ + return gen_rtx_SET (stack_pointer_rtx, + gen_rtx_PLUS (Pmode, + stack_pointer_rtx, + increment)); +} + +/* Expand the function prologue. The prologue is responsible for reserving + storage for the frame, saving the call-saved registers and loading the + GOT register if needed. */ + +void +sparc_expand_prologue (void) +{ + HOST_WIDE_INT size; + rtx_insn *insn; + + /* Compute a snapshot of crtl->uses_only_leaf_regs. Relying + on the final value of the flag means deferring the prologue/epilogue + expansion until just before the second scheduling pass, which is too + late to emit multiple epilogues or return insns. + + Of course we are making the assumption that the value of the flag + will not change between now and its final value. Of the three parts + of the formula, only the last one can reasonably vary. Let's take a + closer look, after assuming that the first two ones are set to true + (otherwise the last value is effectively silenced). + + If only_leaf_regs_used returns false, the global predicate will also + be false so the actual frame size calculated below will be positive. + As a consequence, the save_register_window insn will be emitted in + the instruction stream; now this insn explicitly references %fp + which is not a leaf register so only_leaf_regs_used will always + return false subsequently. + + If only_leaf_regs_used returns true, we hope that the subsequent + optimization passes won't cause non-leaf registers to pop up. For + example, the regrename pass has special provisions to not rename to + non-leaf registers in a leaf function. */ + sparc_leaf_function_p + = optimize > 0 && crtl->is_leaf && only_leaf_regs_used (); + + size = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p); + + if (flag_stack_usage_info) + current_function_static_stack_size = size; + + if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK + || flag_stack_clash_protection) + { + if (crtl->is_leaf && !cfun->calls_alloca) + { + if (size > PROBE_INTERVAL && size > get_stack_check_protect ()) + sparc_emit_probe_stack_range (get_stack_check_protect (), + size - get_stack_check_protect ()); + } + else if (size > 0) + sparc_emit_probe_stack_range (get_stack_check_protect (), size); + } + + if (size == 0) + ; /* do nothing. */ + else if (sparc_leaf_function_p) + { + rtx size_int_rtx = GEN_INT (-size); + + if (size <= 4096) + insn = emit_insn (gen_stack_pointer_inc (size_int_rtx)); + else if (size <= 8192) + { + insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096))); + RTX_FRAME_RELATED_P (insn) = 1; + + /* %sp is still the CFA register. */ + insn = emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size))); + } + else + { + rtx size_rtx = gen_rtx_REG (Pmode, 1); + emit_move_insn (size_rtx, size_int_rtx); + insn = emit_insn (gen_stack_pointer_inc (size_rtx)); + add_reg_note (insn, REG_FRAME_RELATED_EXPR, + gen_stack_pointer_inc (size_int_rtx)); + } + + RTX_FRAME_RELATED_P (insn) = 1; + } + else + { + rtx size_int_rtx = GEN_INT (-size); + + if (size <= 4096) + emit_window_save (size_int_rtx); + else if (size <= 8192) + { + emit_window_save (GEN_INT (-4096)); + + /* %sp is not the CFA register anymore. */ + emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size))); + + /* Make sure no %fp-based store is issued until after the frame is + established. The offset between the frame pointer and the stack + pointer is calculated relative to the value of the stack pointer + at the end of the function prologue, and moving instructions that + access the stack via the frame pointer between the instructions + that decrement the stack pointer could result in accessing the + register window save area, which is volatile. */ + emit_insn (gen_frame_blockage ()); + } + else + { + rtx size_rtx = gen_rtx_REG (Pmode, 1); + emit_move_insn (size_rtx, size_int_rtx); + emit_window_save (size_rtx); + } + } + + if (sparc_leaf_function_p) + { + sparc_frame_base_reg = stack_pointer_rtx; + sparc_frame_base_offset = size + SPARC_STACK_BIAS; + } + else + { + sparc_frame_base_reg = hard_frame_pointer_rtx; + sparc_frame_base_offset = SPARC_STACK_BIAS; + } + + if (sparc_n_global_fp_regs > 0) + emit_save_or_restore_global_fp_regs (sparc_frame_base_reg, + sparc_frame_base_offset + - sparc_apparent_frame_size, + SORR_SAVE); + + /* Advertise that the data calculated just above are now valid. */ + sparc_prologue_data_valid_p = true; +} + +/* Expand the function prologue. The prologue is responsible for reserving + storage for the frame, saving the call-saved registers and loading the + GOT register if needed. */ + +void +sparc_flat_expand_prologue (void) +{ + HOST_WIDE_INT size; + rtx_insn *insn; + + sparc_leaf_function_p = optimize > 0 && crtl->is_leaf; + + size = sparc_compute_frame_size (get_frame_size(), sparc_leaf_function_p); + + if (flag_stack_usage_info) + current_function_static_stack_size = size; + + if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK + || flag_stack_clash_protection) + { + if (crtl->is_leaf && !cfun->calls_alloca) + { + if (size > PROBE_INTERVAL && size > get_stack_check_protect ()) + sparc_emit_probe_stack_range (get_stack_check_protect (), + size - get_stack_check_protect ()); + } + else if (size > 0) + sparc_emit_probe_stack_range (get_stack_check_protect (), size); + } + + if (sparc_save_local_in_regs_p) + emit_save_or_restore_local_in_regs (stack_pointer_rtx, SPARC_STACK_BIAS, + SORR_SAVE); + + if (size == 0) + ; /* do nothing. */ + else + { + rtx size_int_rtx, size_rtx; + + size_rtx = size_int_rtx = GEN_INT (-size); + + /* We establish the frame (i.e. decrement the stack pointer) first, even + if we use a frame pointer, because we cannot clobber any call-saved + registers, including the frame pointer, if we haven't created a new + register save area, for the sake of compatibility with the ABI. */ + if (size <= 4096) + insn = emit_insn (gen_stack_pointer_inc (size_int_rtx)); + else if (size <= 8192 && !frame_pointer_needed) + { + insn = emit_insn (gen_stack_pointer_inc (GEN_INT (-4096))); + RTX_FRAME_RELATED_P (insn) = 1; + insn = emit_insn (gen_stack_pointer_inc (GEN_INT (4096 - size))); + } + else + { + size_rtx = gen_rtx_REG (Pmode, 1); + emit_move_insn (size_rtx, size_int_rtx); + insn = emit_insn (gen_stack_pointer_inc (size_rtx)); + add_reg_note (insn, REG_CFA_ADJUST_CFA, + gen_stack_pointer_inc (size_int_rtx)); + } + RTX_FRAME_RELATED_P (insn) = 1; + + /* Ensure nothing is scheduled until after the frame is established. */ + emit_insn (gen_blockage ()); + + if (frame_pointer_needed) + { + insn = emit_insn (gen_rtx_SET (hard_frame_pointer_rtx, + gen_rtx_MINUS (Pmode, + stack_pointer_rtx, + size_rtx))); + RTX_FRAME_RELATED_P (insn) = 1; + + add_reg_note (insn, REG_CFA_ADJUST_CFA, + gen_rtx_SET (hard_frame_pointer_rtx, + plus_constant (Pmode, stack_pointer_rtx, + size))); + } + + if (return_addr_reg_needed_p (sparc_leaf_function_p)) + { + rtx o7 = gen_rtx_REG (Pmode, INCOMING_RETURN_ADDR_REGNUM); + rtx i7 = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); + + insn = emit_move_insn (i7, o7); + RTX_FRAME_RELATED_P (insn) = 1; + + add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (i7, o7)); + + /* Prevent this instruction from ever being considered dead, + even if this function has no epilogue. */ + emit_use (i7); + } + } + + if (frame_pointer_needed) + { + sparc_frame_base_reg = hard_frame_pointer_rtx; + sparc_frame_base_offset = SPARC_STACK_BIAS; + } + else + { + sparc_frame_base_reg = stack_pointer_rtx; + sparc_frame_base_offset = size + SPARC_STACK_BIAS; + } + + if (sparc_n_global_fp_regs > 0) + emit_save_or_restore_global_fp_regs (sparc_frame_base_reg, + sparc_frame_base_offset + - sparc_apparent_frame_size, + SORR_SAVE); + + /* Advertise that the data calculated just above are now valid. */ + sparc_prologue_data_valid_p = true; +} + +/* This function generates the assembly code for function entry, which boils + down to emitting the necessary .register directives. */ + +static void +sparc_asm_function_prologue (FILE *file) +{ + /* Check that the assumption we made in sparc_expand_prologue is valid. */ + if (!TARGET_FLAT) + gcc_assert (sparc_leaf_function_p == crtl->uses_only_leaf_regs); + + sparc_output_scratch_registers (file); +} + +/* Expand the function epilogue, either normal or part of a sibcall. + We emit all the instructions except the return or the call. */ + +void +sparc_expand_epilogue (bool for_eh) +{ + HOST_WIDE_INT size = sparc_frame_size; + + if (cfun->calls_alloca) + emit_insn (gen_frame_blockage ()); + + if (sparc_n_global_fp_regs > 0) + emit_save_or_restore_global_fp_regs (sparc_frame_base_reg, + sparc_frame_base_offset + - sparc_apparent_frame_size, + SORR_RESTORE); + + if (size == 0 || for_eh) + ; /* do nothing. */ + else if (sparc_leaf_function_p) + { + if (size <= 4096) + emit_insn (gen_stack_pointer_inc (GEN_INT (size))); + else if (size <= 8192) + { + emit_insn (gen_stack_pointer_inc (GEN_INT (4096))); + emit_insn (gen_stack_pointer_inc (GEN_INT (size - 4096))); + } + else + { + rtx reg = gen_rtx_REG (Pmode, 1); + emit_move_insn (reg, GEN_INT (size)); + emit_insn (gen_stack_pointer_inc (reg)); + } + } +} + +/* Expand the function epilogue, either normal or part of a sibcall. + We emit all the instructions except the return or the call. */ + +void +sparc_flat_expand_epilogue (bool for_eh) +{ + HOST_WIDE_INT size = sparc_frame_size; + + if (sparc_n_global_fp_regs > 0) + emit_save_or_restore_global_fp_regs (sparc_frame_base_reg, + sparc_frame_base_offset + - sparc_apparent_frame_size, + SORR_RESTORE); + + /* If we have a frame pointer, we'll need both to restore it before the + frame is destroyed and use its current value in destroying the frame. + Since we don't have an atomic way to do that in the flat window model, + we save the current value into a temporary register (%g1). */ + if (frame_pointer_needed && !for_eh) + emit_move_insn (gen_rtx_REG (Pmode, 1), hard_frame_pointer_rtx); + + if (return_addr_reg_needed_p (sparc_leaf_function_p)) + emit_move_insn (gen_rtx_REG (Pmode, INCOMING_RETURN_ADDR_REGNUM), + gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)); + + if (sparc_save_local_in_regs_p) + emit_save_or_restore_local_in_regs (sparc_frame_base_reg, + sparc_frame_base_offset, + SORR_RESTORE); + + if (size == 0 || for_eh) + ; /* do nothing. */ + else if (frame_pointer_needed) + { + /* Make sure the frame is destroyed after everything else is done. */ + emit_insn (gen_blockage ()); + + emit_move_insn (stack_pointer_rtx, gen_rtx_REG (Pmode, 1)); + } + else + { + /* Likewise. */ + emit_insn (gen_blockage ()); + + if (size <= 4096) + emit_insn (gen_stack_pointer_inc (GEN_INT (size))); + else if (size <= 8192) + { + emit_insn (gen_stack_pointer_inc (GEN_INT (4096))); + emit_insn (gen_stack_pointer_inc (GEN_INT (size - 4096))); + } + else + { + rtx reg = gen_rtx_REG (Pmode, 1); + emit_move_insn (reg, GEN_INT (size)); + emit_insn (gen_stack_pointer_inc (reg)); + } + } +} + +/* Return true if it is appropriate to emit `return' instructions in the + body of a function. */ + +bool +sparc_can_use_return_insn_p (void) +{ + return sparc_prologue_data_valid_p + && sparc_n_global_fp_regs == 0 + && TARGET_FLAT + ? (sparc_frame_size == 0 && !sparc_save_local_in_regs_p) + : (sparc_frame_size == 0 || !sparc_leaf_function_p); +} + +/* This function generates the assembly code for function exit. */ + +static void +sparc_asm_function_epilogue (FILE *file) +{ + /* If the last two instructions of a function are "call foo; dslot;" + the return address might point to the first instruction in the next + function and we have to output a dummy nop for the sake of sane + backtraces in such cases. This is pointless for sibling calls since + the return address is explicitly adjusted. */ + + rtx_insn *insn = get_last_insn (); + + rtx last_real_insn = prev_real_insn (insn); + if (last_real_insn + && NONJUMP_INSN_P (last_real_insn) + && GET_CODE (PATTERN (last_real_insn)) == SEQUENCE) + last_real_insn = XVECEXP (PATTERN (last_real_insn), 0, 0); + + if (last_real_insn + && CALL_P (last_real_insn) + && !SIBLING_CALL_P (last_real_insn)) + fputs("\tnop\n", file); + + sparc_output_deferred_case_vectors (); +} + +/* Output a 'restore' instruction. */ + +static void +output_restore (rtx pat) +{ + rtx operands[3]; + + if (! pat) + { + fputs ("\t restore\n", asm_out_file); + return; + } + + gcc_assert (GET_CODE (pat) == SET); + + operands[0] = SET_DEST (pat); + pat = SET_SRC (pat); + + switch (GET_CODE (pat)) + { + case PLUS: + operands[1] = XEXP (pat, 0); + operands[2] = XEXP (pat, 1); + output_asm_insn (" restore %r1, %2, %Y0", operands); + break; + case LO_SUM: + operands[1] = XEXP (pat, 0); + operands[2] = XEXP (pat, 1); + output_asm_insn (" restore %r1, %%lo(%a2), %Y0", operands); + break; + case ASHIFT: + operands[1] = XEXP (pat, 0); + gcc_assert (XEXP (pat, 1) == const1_rtx); + output_asm_insn (" restore %r1, %r1, %Y0", operands); + break; + default: + operands[1] = pat; + output_asm_insn (" restore %%g0, %1, %Y0", operands); + break; + } +} + +/* Output a return. */ + +const char * +output_return (rtx_insn *insn) +{ + if (crtl->calls_eh_return) + { + /* If the function uses __builtin_eh_return, the eh_return + machinery occupies the delay slot. */ + gcc_assert (!final_sequence); + + if (flag_delayed_branch) + { + if (!TARGET_FLAT && TARGET_V9) + fputs ("\treturn\t%i7+8\n", asm_out_file); + else + { + if (!TARGET_FLAT) + fputs ("\trestore\n", asm_out_file); + + fputs ("\tjmp\t%o7+8\n", asm_out_file); + } + + fputs ("\t add\t%sp, %g1, %sp\n", asm_out_file); + } + else + { + if (!TARGET_FLAT) + fputs ("\trestore\n", asm_out_file); + + fputs ("\tadd\t%sp, %g1, %sp\n", asm_out_file); + fputs ("\tjmp\t%o7+8\n\t nop\n", asm_out_file); + } + } + else if (sparc_leaf_function_p || TARGET_FLAT) + { + /* This is a leaf or flat function so we don't have to bother restoring + the register window, which frees us from dealing with the convoluted + semantics of restore/return. We simply output the jump to the + return address and the insn in the delay slot (if any). */ + + return "jmp\t%%o7+%)%#"; + } + else + { + /* This is a regular function so we have to restore the register window. + We may have a pending insn for the delay slot, which will be either + combined with the 'restore' instruction or put in the delay slot of + the 'return' instruction. */ + + if (final_sequence) + { + rtx_insn *delay; + rtx pat; + + delay = NEXT_INSN (insn); + gcc_assert (delay); + + pat = PATTERN (delay); + + if (TARGET_V9 && ! epilogue_renumber (&pat, 1)) + { + epilogue_renumber (&pat, 0); + return "return\t%%i7+%)%#"; + } + else + { + output_asm_insn ("jmp\t%%i7+%)", NULL); + + /* We're going to output the insn in the delay slot manually. + Make sure to output its source location first. */ + PATTERN (delay) = gen_blockage (); + INSN_CODE (delay) = -1; + final_scan_insn (delay, asm_out_file, optimize, 0, NULL); + INSN_LOCATION (delay) = UNKNOWN_LOCATION; + + output_restore (pat); + } + } + else + { + /* The delay slot is empty. */ + if (TARGET_V9) + return "return\t%%i7+%)\n\t nop"; + else if (flag_delayed_branch) + return "jmp\t%%i7+%)\n\t restore"; + else + return "restore\n\tjmp\t%%o7+%)\n\t nop"; + } + } + + return ""; +} + +/* Output a sibling call. */ + +const char * +output_sibcall (rtx_insn *insn, rtx call_operand) +{ + rtx operands[1]; + + gcc_assert (flag_delayed_branch); + + operands[0] = call_operand; + + if (sparc_leaf_function_p || TARGET_FLAT) + { + /* This is a leaf or flat function so we don't have to bother restoring + the register window. We simply output the jump to the function and + the insn in the delay slot (if any). */ + + gcc_assert (!(LEAF_SIBCALL_SLOT_RESERVED_P && final_sequence)); + + if (final_sequence) + output_asm_insn ("sethi\t%%hi(%a0), %%g1\n\tjmp\t%%g1 + %%lo(%a0)%#", + operands); + else + /* Use or with rs2 %%g0 instead of mov, so that as/ld can optimize + it into branch if possible. */ + output_asm_insn ("or\t%%o7, %%g0, %%g1\n\tcall\t%a0, 0\n\t or\t%%g1, %%g0, %%o7", + operands); + } + else + { + /* This is a regular function so we have to restore the register window. + We may have a pending insn for the delay slot, which will be combined + with the 'restore' instruction. */ + + output_asm_insn ("call\t%a0, 0", operands); + + if (final_sequence) + { + rtx_insn *delay; + rtx pat; + + delay = NEXT_INSN (insn); + gcc_assert (delay); + + pat = PATTERN (delay); + + /* We're going to output the insn in the delay slot manually. + Make sure to output its source location first. */ + PATTERN (delay) = gen_blockage (); + INSN_CODE (delay) = -1; + final_scan_insn (delay, asm_out_file, optimize, 0, NULL); + INSN_LOCATION (delay) = UNKNOWN_LOCATION; + + output_restore (pat); + } + else + output_restore (NULL_RTX); + } + + return ""; +} + +/* Functions for handling argument passing. + + For 32-bit, the first 6 args are normally in registers and the rest are + pushed. Any arg that starts within the first 6 words is at least + partially passed in a register unless its data type forbids. + + For 64-bit, the argument registers are laid out as an array of 16 elements + and arguments are added sequentially. The first 6 int args and up to the + first 16 fp args (depending on size) are passed in regs. + + Slot Stack Integral Float Float in structure Double Long Double + ---- ----- -------- ----- ------------------ ------ ----------- + 15 [SP+248] %f31 %f30,%f31 %d30 + 14 [SP+240] %f29 %f28,%f29 %d28 %q28 + 13 [SP+232] %f27 %f26,%f27 %d26 + 12 [SP+224] %f25 %f24,%f25 %d24 %q24 + 11 [SP+216] %f23 %f22,%f23 %d22 + 10 [SP+208] %f21 %f20,%f21 %d20 %q20 + 9 [SP+200] %f19 %f18,%f19 %d18 + 8 [SP+192] %f17 %f16,%f17 %d16 %q16 + 7 [SP+184] %f15 %f14,%f15 %d14 + 6 [SP+176] %f13 %f12,%f13 %d12 %q12 + 5 [SP+168] %o5 %f11 %f10,%f11 %d10 + 4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8 + 3 [SP+152] %o3 %f7 %f6,%f7 %d6 + 2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4 + 1 [SP+136] %o1 %f3 %f2,%f3 %d2 + 0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0 + + Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise. + + Integral arguments are always passed as 64-bit quantities appropriately + extended. + + Passing of floating point values is handled as follows. + If a prototype is in scope: + If the value is in a named argument (i.e. not a stdarg function or a + value not part of the `...') then the value is passed in the appropriate + fp reg. + If the value is part of the `...' and is passed in one of the first 6 + slots then the value is passed in the appropriate int reg. + If the value is part of the `...' and is not passed in one of the first 6 + slots then the value is passed in memory. + If a prototype is not in scope: + If the value is one of the first 6 arguments the value is passed in the + appropriate integer reg and the appropriate fp reg. + If the value is not one of the first 6 arguments the value is passed in + the appropriate fp reg and in memory. + + + Summary of the calling conventions implemented by GCC on the SPARC: + + 32-bit ABI: + size argument return value + + small integer <4 int. reg. int. reg. + word 4 int. reg. int. reg. + double word 8 int. reg. int. reg. + + _Complex small integer <8 int. reg. int. reg. + _Complex word 8 int. reg. int. reg. + _Complex double word 16 memory int. reg. + + vector integer <=8 int. reg. FP reg. + vector integer >8 memory memory + + float 4 int. reg. FP reg. + double 8 int. reg. FP reg. + long double 16 memory memory + + _Complex float 8 memory FP reg. + _Complex double 16 memory FP reg. + _Complex long double 32 memory FP reg. + + vector float any memory memory + + aggregate any memory memory + + + + 64-bit ABI: + size argument return value + + small integer <8 int. reg. int. reg. + word 8 int. reg. int. reg. + double word 16 int. reg. int. reg. + + _Complex small integer <16 int. reg. int. reg. + _Complex word 16 int. reg. int. reg. + _Complex double word 32 memory int. reg. + + vector integer <=16 FP reg. FP reg. + vector integer 1632 memory memory + + float 4 FP reg. FP reg. + double 8 FP reg. FP reg. + long double 16 FP reg. FP reg. + + _Complex float 8 FP reg. FP reg. + _Complex double 16 FP reg. FP reg. + _Complex long double 32 memory FP reg. + + vector float <=16 FP reg. FP reg. + vector float 1632 memory memory + + aggregate <=16 reg. reg. + aggregate 1632 memory memory + + + +Note #1: complex floating-point types follow the extended SPARC ABIs as +implemented by the Sun compiler. + +Note #2: integer vector types follow the scalar floating-point types +conventions to match what is implemented by the Sun VIS SDK. + +Note #3: floating-point vector types follow the aggregate types +conventions. */ + + +/* Maximum number of int regs for args. */ +#define SPARC_INT_ARG_MAX 6 +/* Maximum number of fp regs for args. */ +#define SPARC_FP_ARG_MAX 16 +/* Number of words (partially) occupied for a given size in units. */ +#define CEIL_NWORDS(SIZE) CEIL((SIZE), UNITS_PER_WORD) + +/* Handle the INIT_CUMULATIVE_ARGS macro. + Initialize a variable CUM of type CUMULATIVE_ARGS + for a call to a function whose data type is FNTYPE. + For a library call, FNTYPE is 0. */ + +void +init_cumulative_args (struct sparc_args *cum, tree fntype, rtx, tree) +{ + cum->words = 0; + cum->prototype_p = fntype && prototype_p (fntype); + cum->libcall_p = !fntype; +} + +/* Handle promotion of pointer and integer arguments. */ + +static machine_mode +sparc_promote_function_mode (const_tree type, machine_mode mode, + int *punsignedp, const_tree, int) +{ + if (type && POINTER_TYPE_P (type)) + { + *punsignedp = POINTERS_EXTEND_UNSIGNED; + return Pmode; + } + + /* Integral arguments are passed as full words, as per the ABI. */ + if (GET_MODE_CLASS (mode) == MODE_INT + && GET_MODE_SIZE (mode) < UNITS_PER_WORD) + return word_mode; + + return mode; +} + +/* Handle the TARGET_STRICT_ARGUMENT_NAMING target hook. */ + +static bool +sparc_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED) +{ + return TARGET_ARCH64 ? true : false; +} + +/* Handle the TARGET_PASS_BY_REFERENCE target hook. + Specify whether to pass the argument by reference. */ + +static bool +sparc_pass_by_reference (cumulative_args_t, const function_arg_info &arg) +{ + tree type = arg.type; + machine_mode mode = arg.mode; + if (TARGET_ARCH32) + /* Original SPARC 32-bit ABI says that structures and unions, + and quad-precision floats are passed by reference. + All other base types are passed in registers. + + Extended ABI (as implemented by the Sun compiler) says that all + complex floats are passed by reference. Pass complex integers + in registers up to 8 bytes. More generally, enforce the 2-word + cap for passing arguments in registers. + + Vector ABI (as implemented by the Sun VIS SDK) says that integer + vectors are passed like floats of the same size, that is in + registers up to 8 bytes. Pass all vector floats by reference + like structure and unions. */ + return ((type && (AGGREGATE_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type))) + || mode == SCmode + /* Catch CDImode, TFmode, DCmode and TCmode. */ + || GET_MODE_SIZE (mode) > 8 + || (type + && VECTOR_TYPE_P (type) + && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8)); + else + /* Original SPARC 64-bit ABI says that structures and unions + smaller than 16 bytes are passed in registers, as well as + all other base types. + + Extended ABI (as implemented by the Sun compiler) says that + complex floats are passed in registers up to 16 bytes. Pass + all complex integers in registers up to 16 bytes. More generally, + enforce the 2-word cap for passing arguments in registers. + + Vector ABI (as implemented by the Sun VIS SDK) says that integer + vectors are passed like floats of the same size, that is in + registers (up to 16 bytes). Pass all vector floats like structure + and unions. */ + return ((type + && (AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type)) + && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 16) + /* Catch CTImode and TCmode. */ + || GET_MODE_SIZE (mode) > 16); +} + +/* Traverse the record TYPE recursively and call FUNC on its fields. + NAMED is true if this is for a named parameter. DATA is passed + to FUNC for each field. OFFSET is the starting position and + PACKED is true if we are inside a packed record. */ + +template +static void +traverse_record_type (const_tree type, bool named, T *data, + int offset = 0, bool packed = false) +{ + /* The ABI obviously doesn't specify how packed structures are passed. + These are passed in integer regs if possible, otherwise memory. */ + if (!packed) + for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) + { + packed = true; + break; + } + + /* Walk the real fields, but skip those with no size or a zero size. + ??? Fields with variable offset are handled as having zero offset. */ + for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) + if (TREE_CODE (field) == FIELD_DECL) + { + if (!DECL_SIZE (field) || integer_zerop (DECL_SIZE (field))) + continue; + + int bitpos = offset; + if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST) + bitpos += int_bit_position (field); + + tree field_type = TREE_TYPE (field); + if (TREE_CODE (field_type) == RECORD_TYPE) + traverse_record_type (field_type, named, data, bitpos, + packed); + else + { + const bool fp_type + = FLOAT_TYPE_P (field_type) || VECTOR_TYPE_P (field_type); + Func (field, bitpos, fp_type && named && !packed && TARGET_FPU, + data); + } + } +} + +/* Handle recursive register classifying for structure layout. */ + +typedef struct +{ + bool fp_regs; /* true if field eligible to FP registers. */ + bool fp_regs_in_first_word; /* true if such field in first word. */ +} classify_data_t; + +/* A subroutine of function_arg_slotno. Classify the field. */ + +inline void +classify_registers (const_tree, int bitpos, bool fp, classify_data_t *data) +{ + if (fp) + { + data->fp_regs = true; + if (bitpos < BITS_PER_WORD) + data->fp_regs_in_first_word = true; + } +} + +/* Compute the slot number to pass an argument in. + Return the slot number or -1 if passing on the stack. + + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + MODE is the argument's machine mode. + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + NAMED is nonzero if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + INCOMING is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. + *PREGNO records the register number to use if scalar type. + *PPADDING records the amount of padding needed in words. */ + +static int +function_arg_slotno (const struct sparc_args *cum, machine_mode mode, + const_tree type, bool named, bool incoming, + int *pregno, int *ppadding) +{ + const int regbase + = incoming ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST; + int slotno = cum->words, regno; + enum mode_class mclass = GET_MODE_CLASS (mode); + + /* Silence warnings in the callers. */ + *pregno = -1; + *ppadding = -1; + + if (type && TREE_ADDRESSABLE (type)) + return -1; + + /* In 64-bit mode, objects requiring 16-byte alignment get it. */ + if (TARGET_ARCH64 + && (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode)) >= 128 + && (slotno & 1) != 0) + { + slotno++; + *ppadding = 1; + } + else + *ppadding = 0; + + /* Vector types deserve special treatment because they are polymorphic wrt + their mode, depending upon whether VIS instructions are enabled. */ + if (type && VECTOR_TYPE_P (type)) + { + if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) + { + /* The SPARC port defines no floating-point vector modes. */ + gcc_assert (mode == BLKmode); + } + else + { + /* Integer vector types should either have a vector + mode or an integral mode, because we are guaranteed + by pass_by_reference that their size is not greater + than 16 bytes and TImode is 16-byte wide. */ + gcc_assert (mode != BLKmode); + + /* Integer vectors are handled like floats as per + the Sun VIS SDK. */ + mclass = MODE_FLOAT; + } + } + + switch (mclass) + { + case MODE_FLOAT: + case MODE_COMPLEX_FLOAT: + case MODE_VECTOR_INT: + if (TARGET_ARCH64 && TARGET_FPU && named) + { + /* If all arg slots are filled, then must pass on stack. */ + if (slotno >= SPARC_FP_ARG_MAX) + return -1; + + regno = SPARC_FP_ARG_FIRST + slotno * 2; + /* Arguments filling only one single FP register are + right-justified in the outer double FP register. */ + if (GET_MODE_SIZE (mode) <= 4) + regno++; + break; + } + /* fallthrough */ + + case MODE_INT: + case MODE_COMPLEX_INT: + /* If all arg slots are filled, then must pass on stack. */ + if (slotno >= SPARC_INT_ARG_MAX) + return -1; + + regno = regbase + slotno; + break; + + case MODE_RANDOM: + /* MODE is VOIDmode when generating the actual call. */ + if (mode == VOIDmode) + return -1; + + if (TARGET_64BIT && TARGET_FPU && named + && type + && (TREE_CODE (type) == RECORD_TYPE || VECTOR_TYPE_P (type))) + { + /* If all arg slots are filled, then must pass on stack. */ + if (slotno >= SPARC_FP_ARG_MAX) + return -1; + + if (TREE_CODE (type) == RECORD_TYPE) + { + classify_data_t data = { false, false }; + traverse_record_type + (type, named, &data); + + if (data.fp_regs) + { + /* If all FP slots are filled except for the last one and + there is no FP field in the first word, then must pass + on stack. */ + if (slotno >= SPARC_FP_ARG_MAX - 1 + && !data.fp_regs_in_first_word) + return -1; + } + else + { + /* If all int slots are filled, then must pass on stack. */ + if (slotno >= SPARC_INT_ARG_MAX) + return -1; + } + + /* PREGNO isn't set since both int and FP regs can be used. */ + return slotno; + } + + regno = SPARC_FP_ARG_FIRST + slotno * 2; + } + else + { + /* If all arg slots are filled, then must pass on stack. */ + if (slotno >= SPARC_INT_ARG_MAX) + return -1; + + regno = regbase + slotno; + } + break; + + default : + gcc_unreachable (); + } + + *pregno = regno; + return slotno; +} + +/* Handle recursive register counting/assigning for structure layout. */ + +typedef struct +{ + int slotno; /* slot number of the argument. */ + int regbase; /* regno of the base register. */ + int intoffset; /* offset of the first pending integer field. */ + int nregs; /* number of words passed in registers. */ + bool stack; /* true if part of the argument is on the stack. */ + rtx ret; /* return expression being built. */ +} assign_data_t; + +/* A subroutine of function_arg_record_value. Compute the number of integer + registers to be assigned between PARMS->intoffset and BITPOS. Return + true if at least one integer register is assigned or false otherwise. */ + +static bool +compute_int_layout (int bitpos, assign_data_t *data, int *pnregs) +{ + if (data->intoffset < 0) + return false; + + const int intoffset = data->intoffset; + data->intoffset = -1; + + const int this_slotno = data->slotno + intoffset / BITS_PER_WORD; + const unsigned int startbit = ROUND_DOWN (intoffset, BITS_PER_WORD); + const unsigned int endbit = ROUND_UP (bitpos, BITS_PER_WORD); + int nregs = (endbit - startbit) / BITS_PER_WORD; + + if (nregs > 0 && nregs > SPARC_INT_ARG_MAX - this_slotno) + { + nregs = SPARC_INT_ARG_MAX - this_slotno; + + /* We need to pass this field (partly) on the stack. */ + data->stack = 1; + } + + if (nregs <= 0) + return false; + + *pnregs = nregs; + return true; +} + +/* A subroutine of function_arg_record_value. Compute the number and the mode + of the FP registers to be assigned for FIELD. Return true if at least one + FP register is assigned or false otherwise. */ + +static bool +compute_fp_layout (const_tree field, int bitpos, assign_data_t *data, + int *pnregs, machine_mode *pmode) +{ + const int this_slotno = data->slotno + bitpos / BITS_PER_WORD; + machine_mode mode = DECL_MODE (field); + int nregs, nslots; + + /* Slots are counted as words while regs are counted as having the size of + the (inner) mode. */ + if (VECTOR_TYPE_P (TREE_TYPE (field)) && mode == BLKmode) + { + mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field))); + nregs = TYPE_VECTOR_SUBPARTS (TREE_TYPE (field)); + } + else if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE) + { + mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (field))); + nregs = 2; + } + else + nregs = 1; + + nslots = CEIL_NWORDS (nregs * GET_MODE_SIZE (mode)); + + if (nslots > SPARC_FP_ARG_MAX - this_slotno) + { + nslots = SPARC_FP_ARG_MAX - this_slotno; + nregs = (nslots * UNITS_PER_WORD) / GET_MODE_SIZE (mode); + + /* We need to pass this field (partly) on the stack. */ + data->stack = 1; + + if (nregs <= 0) + return false; + } + + *pnregs = nregs; + *pmode = mode; + return true; +} + +/* A subroutine of function_arg_record_value. Count the number of registers + to be assigned for FIELD and between PARMS->intoffset and BITPOS. */ + +inline void +count_registers (const_tree field, int bitpos, bool fp, assign_data_t *data) +{ + if (fp) + { + int nregs; + machine_mode mode; + + if (compute_int_layout (bitpos, data, &nregs)) + data->nregs += nregs; + + if (compute_fp_layout (field, bitpos, data, &nregs, &mode)) + data->nregs += nregs; + } + else + { + if (data->intoffset < 0) + data->intoffset = bitpos; + } +} + +/* A subroutine of function_arg_record_value. Assign the bits of the + structure between PARMS->intoffset and BITPOS to integer registers. */ + +static void +assign_int_registers (int bitpos, assign_data_t *data) +{ + int intoffset = data->intoffset; + machine_mode mode; + int nregs; + + if (!compute_int_layout (bitpos, data, &nregs)) + return; + + /* If this is the trailing part of a word, only load that much into + the register. Otherwise load the whole register. Note that in + the latter case we may pick up unwanted bits. It's not a problem + at the moment but may wish to revisit. */ + if (intoffset % BITS_PER_WORD != 0) + mode = smallest_int_mode_for_size (BITS_PER_WORD + - intoffset % BITS_PER_WORD); + else + mode = word_mode; + + const int this_slotno = data->slotno + intoffset / BITS_PER_WORD; + unsigned int regno = data->regbase + this_slotno; + intoffset /= BITS_PER_UNIT; + + do + { + rtx reg = gen_rtx_REG (mode, regno); + XVECEXP (data->ret, 0, data->stack + data->nregs) + = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset)); + data->nregs += 1; + mode = word_mode; + regno += 1; + intoffset = (intoffset | (UNITS_PER_WORD - 1)) + 1; + } + while (--nregs > 0); +} + +/* A subroutine of function_arg_record_value. Assign FIELD at position + BITPOS to FP registers. */ + +static void +assign_fp_registers (const_tree field, int bitpos, assign_data_t *data) +{ + int nregs; + machine_mode mode; + + if (!compute_fp_layout (field, bitpos, data, &nregs, &mode)) + return; + + const int this_slotno = data->slotno + bitpos / BITS_PER_WORD; + int regno = SPARC_FP_ARG_FIRST + this_slotno * 2; + if (GET_MODE_SIZE (mode) <= 4 && (bitpos & 32) != 0) + regno++; + int pos = bitpos / BITS_PER_UNIT; + + do + { + rtx reg = gen_rtx_REG (mode, regno); + XVECEXP (data->ret, 0, data->stack + data->nregs) + = gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (pos)); + data->nregs += 1; + regno += GET_MODE_SIZE (mode) / 4; + pos += GET_MODE_SIZE (mode); + } + while (--nregs > 0); +} + +/* A subroutine of function_arg_record_value. Assign FIELD and the bits of + the structure between PARMS->intoffset and BITPOS to registers. */ + +inline void +assign_registers (const_tree field, int bitpos, bool fp, assign_data_t *data) +{ + if (fp) + { + assign_int_registers (bitpos, data); + + assign_fp_registers (field, bitpos, data); + } + else + { + if (data->intoffset < 0) + data->intoffset = bitpos; + } +} + +/* Used by function_arg and function_value to implement the complex + conventions of the 64-bit ABI for passing and returning structures. + Return an expression valid as a return value for the FUNCTION_ARG + and TARGET_FUNCTION_VALUE. + + TYPE is the data type of the argument (as a tree). + This is null for libcalls where that information may + not be available. + MODE is the argument's machine mode. + SLOTNO is the index number of the argument's slot in the parameter array. + NAMED is true if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + REGBASE is the regno of the base register for the parameter array. */ + +static rtx +function_arg_record_value (const_tree type, machine_mode mode, + int slotno, bool named, int regbase) +{ + const int size = int_size_in_bytes (type); + assign_data_t data; + int nregs; + + data.slotno = slotno; + data.regbase = regbase; + + /* Count how many registers we need. */ + data.nregs = 0; + data.intoffset = 0; + data.stack = false; + traverse_record_type (type, named, &data); + + /* Take into account pending integer fields. */ + if (compute_int_layout (size * BITS_PER_UNIT, &data, &nregs)) + data.nregs += nregs; + + /* Allocate the vector and handle some annoying special cases. */ + nregs = data.nregs; + + if (nregs == 0) + { + /* ??? Empty structure has no value? Duh? */ + if (size <= 0) + { + /* Though there's nothing really to store, return a word register + anyway so the rest of gcc doesn't go nuts. Returning a PARALLEL + leads to breakage due to the fact that there are zero bytes to + load. */ + return gen_rtx_REG (mode, regbase); + } + + /* ??? C++ has structures with no fields, and yet a size. Give up + for now and pass everything back in integer registers. */ + nregs = CEIL_NWORDS (size); + if (nregs + slotno > SPARC_INT_ARG_MAX) + nregs = SPARC_INT_ARG_MAX - slotno; + } + + gcc_assert (nregs > 0); + + data.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (data.stack + nregs)); + + /* If at least one field must be passed on the stack, generate + (parallel [(expr_list (nil) ...) ...]) so that all fields will + also be passed on the stack. We can't do much better because the + semantics of TARGET_ARG_PARTIAL_BYTES doesn't handle the case + of structures for which the fields passed exclusively in registers + are not at the beginning of the structure. */ + if (data.stack) + XVECEXP (data.ret, 0, 0) + = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx); + + /* Assign the registers. */ + data.nregs = 0; + data.intoffset = 0; + traverse_record_type (type, named, &data); + + /* Assign pending integer fields. */ + assign_int_registers (size * BITS_PER_UNIT, &data); + + gcc_assert (data.nregs == nregs); + + return data.ret; +} + +/* Used by function_arg and function_value to implement the conventions + of the 64-bit ABI for passing and returning unions. + Return an expression valid as a return value for the FUNCTION_ARG + and TARGET_FUNCTION_VALUE. + + SIZE is the size in bytes of the union. + MODE is the argument's machine mode. + SLOTNO is the index number of the argument's slot in the parameter array. + REGNO is the hard register the union will be passed in. */ + +static rtx +function_arg_union_value (int size, machine_mode mode, int slotno, int regno) +{ + unsigned int nwords; + + /* See comment in function_arg_record_value for empty structures. */ + if (size <= 0) + return gen_rtx_REG (mode, regno); + + if (slotno == SPARC_INT_ARG_MAX - 1) + nwords = 1; + else + nwords = CEIL_NWORDS (size); + + rtx regs = gen_rtx_PARALLEL (mode, rtvec_alloc (nwords)); + + /* Unions are passed left-justified. */ + for (unsigned int i = 0; i < nwords; i++) + XVECEXP (regs, 0, i) + = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (word_mode, regno + i), + GEN_INT (UNITS_PER_WORD * i)); + + return regs; +} + +/* Used by function_arg and function_value to implement the conventions + of the 64-bit ABI for passing and returning BLKmode vectors. + Return an expression valid as a return value for the FUNCTION_ARG + and TARGET_FUNCTION_VALUE. + + SIZE is the size in bytes of the vector. + SLOTNO is the index number of the argument's slot in the parameter array. + NAMED is true if this argument is a named parameter + (otherwise it is an extra parameter matching an ellipsis). + REGNO is the hard register the vector will be passed in. */ + +static rtx +function_arg_vector_value (int size, int slotno, bool named, int regno) +{ + const int mult = (named ? 2 : 1); + unsigned int nwords; + + if (slotno == (named ? SPARC_FP_ARG_MAX : SPARC_INT_ARG_MAX) - 1) + nwords = 1; + else + nwords = CEIL_NWORDS (size); + + rtx regs = gen_rtx_PARALLEL (BLKmode, rtvec_alloc (nwords)); + + if (size < UNITS_PER_WORD) + XVECEXP (regs, 0, 0) + = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (SImode, regno), + const0_rtx); + else + for (unsigned int i = 0; i < nwords; i++) + XVECEXP (regs, 0, i) + = gen_rtx_EXPR_LIST (VOIDmode, + gen_rtx_REG (word_mode, regno + i * mult), + GEN_INT (i * UNITS_PER_WORD)); + + return regs; +} + +/* Determine where to put an argument to a function. + Value is zero to push the argument on the stack, + or a hard register in which to store the argument. + + CUM is a variable of type CUMULATIVE_ARGS which gives info about + the preceding args and about the function being called. + ARG is a description of the argument. + INCOMING_P is false for TARGET_FUNCTION_ARG, true for + TARGET_FUNCTION_INCOMING_ARG. */ + +static rtx +sparc_function_arg_1 (cumulative_args_t cum_v, const function_arg_info &arg, + bool incoming) +{ + const CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); + const int regbase + = incoming ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST; + int slotno, regno, padding; + tree type = arg.type; + machine_mode mode = arg.mode; + enum mode_class mclass = GET_MODE_CLASS (mode); + bool named = arg.named; + + slotno + = function_arg_slotno (cum, mode, type, named, incoming, ®no, &padding); + if (slotno == -1) + return 0; + + /* Integer vectors are handled like floats as per the Sun VIS SDK. */ + if (type && VECTOR_INTEGER_TYPE_P (type)) + mclass = MODE_FLOAT; + + if (TARGET_ARCH32) + return gen_rtx_REG (mode, regno); + + /* Structures up to 16 bytes in size are passed in arg slots on the stack + and are promoted to registers if possible. */ + if (type && TREE_CODE (type) == RECORD_TYPE) + { + const int size = int_size_in_bytes (type); + gcc_assert (size <= 16); + + return function_arg_record_value (type, mode, slotno, named, regbase); + } + + /* Unions up to 16 bytes in size are passed in integer registers. */ + else if (type && TREE_CODE (type) == UNION_TYPE) + { + const int size = int_size_in_bytes (type); + gcc_assert (size <= 16); + + return function_arg_union_value (size, mode, slotno, regno); + } + + /* Floating-point vectors up to 16 bytes are passed in registers. */ + else if (type && VECTOR_TYPE_P (type) && mode == BLKmode) + { + const int size = int_size_in_bytes (type); + gcc_assert (size <= 16); + + return function_arg_vector_value (size, slotno, named, regno); + } + + /* v9 fp args in reg slots beyond the int reg slots get passed in regs + but also have the slot allocated for them. + If no prototype is in scope fp values in register slots get passed + in two places, either fp regs and int regs or fp regs and memory. */ + else if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) + && SPARC_FP_REG_P (regno)) + { + rtx reg = gen_rtx_REG (mode, regno); + if (cum->prototype_p || cum->libcall_p) + return reg; + else + { + rtx v0, v1; + + if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2) + { + int intreg; + + /* On incoming, we don't need to know that the value + is passed in %f0 and %i0, and it confuses other parts + causing needless spillage even on the simplest cases. */ + if (incoming) + return reg; + + intreg = (SPARC_OUTGOING_INT_ARG_FIRST + + (regno - SPARC_FP_ARG_FIRST) / 2); + + v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); + v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg), + const0_rtx); + return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); + } + else + { + v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx); + v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx); + return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1)); + } + } + } + + /* All other aggregate types are passed in an integer register in a mode + corresponding to the size of the type. */ + else if (type && AGGREGATE_TYPE_P (type)) + { + const int size = int_size_in_bytes (type); + gcc_assert (size <= 16); + + mode = int_mode_for_size (size * BITS_PER_UNIT, 0).else_blk (); + } + + return gen_rtx_REG (mode, regno); +} + +/* Handle the TARGET_FUNCTION_ARG target hook. */ + +static rtx +sparc_function_arg (cumulative_args_t cum, const function_arg_info &arg) +{ + return sparc_function_arg_1 (cum, arg, false); +} + +/* Handle the TARGET_FUNCTION_INCOMING_ARG target hook. */ + +static rtx +sparc_function_incoming_arg (cumulative_args_t cum, + const function_arg_info &arg) +{ + return sparc_function_arg_1 (cum, arg, true); +} + +/* For sparc64, objects requiring 16 byte alignment are passed that way. */ + +static unsigned int +sparc_function_arg_boundary (machine_mode mode, const_tree type) +{ + return ((TARGET_ARCH64 + && (GET_MODE_ALIGNMENT (mode) == 128 + || (type && TYPE_ALIGN (type) == 128))) + ? 128 + : PARM_BOUNDARY); +} + +/* For an arg passed partly in registers and partly in memory, + this is the number of bytes of registers used. + For args passed entirely in registers or entirely in memory, zero. + + Any arg that starts in the first 6 regs but won't entirely fit in them + needs partial registers on v8. On v9, structures with integer + values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp + values that begin in the last fp reg [where "last fp reg" varies with the + mode] will be split between that reg and memory. */ + +static int +sparc_arg_partial_bytes (cumulative_args_t cum, const function_arg_info &arg) +{ + int slotno, regno, padding; + + /* We pass false for incoming here, it doesn't matter. */ + slotno = function_arg_slotno (get_cumulative_args (cum), arg.mode, arg.type, + arg.named, false, ®no, &padding); + + if (slotno == -1) + return 0; + + if (TARGET_ARCH32) + { + /* We are guaranteed by pass_by_reference that the size of the + argument is not greater than 8 bytes, so we only need to return + one word if the argument is partially passed in registers. */ + const int size = GET_MODE_SIZE (arg.mode); + + if (size > UNITS_PER_WORD && slotno == SPARC_INT_ARG_MAX - 1) + return UNITS_PER_WORD; + } + else + { + /* We are guaranteed by pass_by_reference that the size of the + argument is not greater than 16 bytes, so we only need to return + one word if the argument is partially passed in registers. */ + if (arg.aggregate_type_p ()) + { + const int size = int_size_in_bytes (arg.type); + + if (size > UNITS_PER_WORD + && (slotno == SPARC_INT_ARG_MAX - 1 + || slotno == SPARC_FP_ARG_MAX - 1)) + return UNITS_PER_WORD; + } + else if (GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_INT + || ((GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_FLOAT + || (arg.type && VECTOR_TYPE_P (arg.type))) + && !(TARGET_FPU && arg.named))) + { + const int size = (arg.type && VECTOR_FLOAT_TYPE_P (arg.type)) + ? int_size_in_bytes (arg.type) + : GET_MODE_SIZE (arg.mode); + + if (size > UNITS_PER_WORD && slotno == SPARC_INT_ARG_MAX - 1) + return UNITS_PER_WORD; + } + else if (GET_MODE_CLASS (arg.mode) == MODE_COMPLEX_FLOAT + || (arg.type && VECTOR_TYPE_P (arg.type))) + { + const int size = (arg.type && VECTOR_FLOAT_TYPE_P (arg.type)) + ? int_size_in_bytes (arg.type) + : GET_MODE_SIZE (arg.mode); + + if (size > UNITS_PER_WORD && slotno == SPARC_FP_ARG_MAX - 1) + return UNITS_PER_WORD; + } + } + + return 0; +} + +/* Handle the TARGET_FUNCTION_ARG_ADVANCE hook. + Update the data in CUM to advance over argument ARG. */ + +static void +sparc_function_arg_advance (cumulative_args_t cum_v, + const function_arg_info &arg) +{ + CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); + tree type = arg.type; + machine_mode mode = arg.mode; + int regno, padding; + + /* We pass false for incoming here, it doesn't matter. */ + function_arg_slotno (cum, mode, type, arg.named, false, ®no, &padding); + + /* If argument requires leading padding, add it. */ + cum->words += padding; + + if (TARGET_ARCH32) + cum->words += CEIL_NWORDS (GET_MODE_SIZE (mode)); + else + { + /* For types that can have BLKmode, get the size from the type. */ + if (type && (AGGREGATE_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type))) + { + const int size = int_size_in_bytes (type); + + /* See comment in function_arg_record_value for empty structures. */ + if (size <= 0) + cum->words++; + else + cum->words += CEIL_NWORDS (size); + } + else + cum->words += CEIL_NWORDS (GET_MODE_SIZE (mode)); + } +} + +/* Implement TARGET_FUNCTION_ARG_PADDING. For the 64-bit ABI structs + are always stored left shifted in their argument slot. */ + +static pad_direction +sparc_function_arg_padding (machine_mode mode, const_tree type) +{ + if (TARGET_ARCH64 && type && AGGREGATE_TYPE_P (type)) + return PAD_UPWARD; + + /* Fall back to the default. */ + return default_function_arg_padding (mode, type); +} + +/* Handle the TARGET_RETURN_IN_MEMORY target hook. + Specify whether to return the return value in memory. */ + +static bool +sparc_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) +{ + if (TARGET_ARCH32) + /* Original SPARC 32-bit ABI says that structures and unions, and + quad-precision floats are returned in memory. But note that the + first part is implemented through -fpcc-struct-return being the + default, so here we only implement -freg-struct-return instead. + All other base types are returned in registers. + + Extended ABI (as implemented by the Sun compiler) says that + all complex floats are returned in registers (8 FP registers + at most for '_Complex long double'). Return all complex integers + in registers (4 at most for '_Complex long long'). + + Vector ABI (as implemented by the Sun VIS SDK) says that vector + integers are returned like floats of the same size, that is in + registers up to 8 bytes and in memory otherwise. Return all + vector floats in memory like structure and unions; note that + they always have BLKmode like the latter. */ + return (TYPE_MODE (type) == BLKmode + || TYPE_MODE (type) == TFmode + || (TREE_CODE (type) == VECTOR_TYPE + && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8)); + else + /* Original SPARC 64-bit ABI says that structures and unions + smaller than 32 bytes are returned in registers, as well as + all other base types. + + Extended ABI (as implemented by the Sun compiler) says that all + complex floats are returned in registers (8 FP registers at most + for '_Complex long double'). Return all complex integers in + registers (4 at most for '_Complex TItype'). + + Vector ABI (as implemented by the Sun VIS SDK) says that vector + integers are returned like floats of the same size, that is in + registers. Return all vector floats like structure and unions; + note that they always have BLKmode like the latter. */ + return (TYPE_MODE (type) == BLKmode + && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 32); +} + +/* Handle the TARGET_STRUCT_VALUE target hook. + Return where to find the structure return value address. */ + +static rtx +sparc_struct_value_rtx (tree fndecl, int incoming) +{ + if (TARGET_ARCH64) + return NULL_RTX; + else + { + rtx mem; + + if (incoming) + mem = gen_frame_mem (Pmode, plus_constant (Pmode, frame_pointer_rtx, + STRUCT_VALUE_OFFSET)); + else + mem = gen_frame_mem (Pmode, plus_constant (Pmode, stack_pointer_rtx, + STRUCT_VALUE_OFFSET)); + + /* Only follow the SPARC ABI for fixed-size structure returns. + Variable size structure returns are handled per the normal + procedures in GCC. This is enabled by -mstd-struct-return */ + if (incoming == 2 + && sparc_std_struct_return + && TYPE_SIZE_UNIT (TREE_TYPE (fndecl)) + && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (fndecl))) == INTEGER_CST) + { + /* We must check and adjust the return address, as it is optional + as to whether the return object is really provided. */ + rtx ret_reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); + rtx scratch = gen_reg_rtx (SImode); + rtx_code_label *endlab = gen_label_rtx (); + + /* Calculate the return object size. */ + tree size = TYPE_SIZE_UNIT (TREE_TYPE (fndecl)); + rtx size_rtx = GEN_INT (TREE_INT_CST_LOW (size) & 0xfff); + /* Construct a temporary return value. */ + rtx temp_val + = assign_stack_local (Pmode, TREE_INT_CST_LOW (size), 0); + + /* Implement SPARC 32-bit psABI callee return struct checking: + + Fetch the instruction where we will return to and see if + it's an unimp instruction (the most significant 10 bits + will be zero). */ + emit_move_insn (scratch, gen_rtx_MEM (SImode, + plus_constant (Pmode, + ret_reg, 8))); + /* Assume the size is valid and pre-adjust. */ + emit_insn (gen_add3_insn (ret_reg, ret_reg, GEN_INT (4))); + emit_cmp_and_jump_insns (scratch, size_rtx, EQ, const0_rtx, SImode, + 0, endlab); + emit_insn (gen_sub3_insn (ret_reg, ret_reg, GEN_INT (4))); + /* Write the address of the memory pointed to by temp_val into + the memory pointed to by mem. */ + emit_move_insn (mem, XEXP (temp_val, 0)); + emit_label (endlab); + } + + return mem; + } +} + +/* Handle TARGET_FUNCTION_VALUE, and TARGET_LIBCALL_VALUE target hook. + For v9, function return values are subject to the same rules as arguments, + except that up to 32 bytes may be returned in registers. */ + +static rtx +sparc_function_value_1 (const_tree type, machine_mode mode, bool outgoing) +{ + /* Beware that the two values are swapped here wrt function_arg. */ + const int regbase + = outgoing ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST; + enum mode_class mclass = GET_MODE_CLASS (mode); + int regno; + + /* Integer vectors are handled like floats as per the Sun VIS SDK. + Note that integer vectors larger than 16 bytes have BLKmode so + they need to be handled like floating-point vectors below. */ + if (type && VECTOR_INTEGER_TYPE_P (type) && mode != BLKmode) + mclass = MODE_FLOAT; + + if (TARGET_ARCH64 && type) + { + /* Structures up to 32 bytes in size are returned in registers. */ + if (TREE_CODE (type) == RECORD_TYPE) + { + const int size = int_size_in_bytes (type); + gcc_assert (size <= 32); + + return function_arg_record_value (type, mode, 0, true, regbase); + } + + /* Unions up to 32 bytes in size are returned in integer registers. */ + else if (TREE_CODE (type) == UNION_TYPE) + { + const int size = int_size_in_bytes (type); + gcc_assert (size <= 32); + + return function_arg_union_value (size, mode, 0, regbase); + } + + /* Vectors up to 32 bytes are returned in FP registers. */ + else if (VECTOR_TYPE_P (type) && mode == BLKmode) + { + const int size = int_size_in_bytes (type); + gcc_assert (size <= 32); + + return function_arg_vector_value (size, 0, true, SPARC_FP_ARG_FIRST); + } + + /* Objects that require it are returned in FP registers. */ + else if (mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) + ; + + /* All other aggregate types are returned in an integer register in a + mode corresponding to the size of the type. */ + else if (AGGREGATE_TYPE_P (type)) + { + /* All other aggregate types are passed in an integer register + in a mode corresponding to the size of the type. */ + const int size = int_size_in_bytes (type); + gcc_assert (size <= 32); + + mode = int_mode_for_size (size * BITS_PER_UNIT, 0).else_blk (); + + /* ??? We probably should have made the same ABI change in + 3.4.0 as the one we made for unions. The latter was + required by the SCD though, while the former is not + specified, so we favored compatibility and efficiency. + + Now we're stuck for aggregates larger than 16 bytes, + because OImode vanished in the meantime. Let's not + try to be unduly clever, and simply follow the ABI + for unions in that case. */ + if (mode == BLKmode) + return function_arg_union_value (size, mode, 0, regbase); + else + mclass = MODE_INT; + } + + /* We should only have pointer and integer types at this point. This + must match sparc_promote_function_mode. */ + else if (mclass == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD) + mode = word_mode; + } + + /* We should only have pointer and integer types at this point, except with + -freg-struct-return. This must match sparc_promote_function_mode. */ + else if (TARGET_ARCH32 + && !(type && AGGREGATE_TYPE_P (type)) + && mclass == MODE_INT + && GET_MODE_SIZE (mode) < UNITS_PER_WORD) + mode = word_mode; + + if ((mclass == MODE_FLOAT || mclass == MODE_COMPLEX_FLOAT) && TARGET_FPU) + regno = SPARC_FP_ARG_FIRST; + else + regno = regbase; + + return gen_rtx_REG (mode, regno); +} + +/* Handle TARGET_FUNCTION_VALUE. + On the SPARC, the value is found in the first "output" register, but the + called function leaves it in the first "input" register. */ + +static rtx +sparc_function_value (const_tree valtype, + const_tree fn_decl_or_type ATTRIBUTE_UNUSED, + bool outgoing) +{ + return sparc_function_value_1 (valtype, TYPE_MODE (valtype), outgoing); +} + +/* Handle TARGET_LIBCALL_VALUE. */ + +static rtx +sparc_libcall_value (machine_mode mode, + const_rtx fun ATTRIBUTE_UNUSED) +{ + return sparc_function_value_1 (NULL_TREE, mode, false); +} + +/* Handle FUNCTION_VALUE_REGNO_P. + On the SPARC, the first "output" reg is used for integer values, and the + first floating point register is used for floating point values. */ + +static bool +sparc_function_value_regno_p (const unsigned int regno) +{ + return (regno == 8 || (TARGET_FPU && regno == 32)); +} + +/* Do what is necessary for `va_start'. We look at the current function + to determine if stdarg or varargs is used and return the address of + the first unnamed parameter. */ + +static rtx +sparc_builtin_saveregs (void) +{ + int first_reg = crtl->args.info.words; + rtx address; + int regno; + + for (regno = first_reg; regno < SPARC_INT_ARG_MAX; regno++) + emit_move_insn (gen_rtx_MEM (word_mode, + gen_rtx_PLUS (Pmode, + frame_pointer_rtx, + GEN_INT (FIRST_PARM_OFFSET (0) + + (UNITS_PER_WORD + * regno)))), + gen_rtx_REG (word_mode, + SPARC_INCOMING_INT_ARG_FIRST + regno)); + + address = gen_rtx_PLUS (Pmode, + frame_pointer_rtx, + GEN_INT (FIRST_PARM_OFFSET (0) + + UNITS_PER_WORD * first_reg)); + + return address; +} + +/* Implement `va_start' for stdarg. */ + +static void +sparc_va_start (tree valist, rtx nextarg) +{ + nextarg = expand_builtin_saveregs (); + std_expand_builtin_va_start (valist, nextarg); +} + +/* Implement `va_arg' for stdarg. */ + +static tree +sparc_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, + gimple_seq *post_p) +{ + HOST_WIDE_INT size, rsize, align; + tree addr, incr; + bool indirect; + tree ptrtype = build_pointer_type (type); + + if (pass_va_arg_by_reference (type)) + { + indirect = true; + size = rsize = UNITS_PER_WORD; + align = 0; + } + else + { + indirect = false; + size = int_size_in_bytes (type); + rsize = ROUND_UP (size, UNITS_PER_WORD); + align = 0; + + if (TARGET_ARCH64) + { + /* For SPARC64, objects requiring 16-byte alignment get it. */ + if (TYPE_ALIGN (type) >= 2 * (unsigned) BITS_PER_WORD) + align = 2 * UNITS_PER_WORD; + + /* SPARC-V9 ABI states that structures up to 16 bytes in size + are left-justified in their slots. */ + if (AGGREGATE_TYPE_P (type)) + { + if (size == 0) + size = rsize = UNITS_PER_WORD; + else + size = rsize; + } + } + } + + incr = valist; + if (align) + { + incr = fold_build_pointer_plus_hwi (incr, align - 1); + incr = fold_convert (sizetype, incr); + incr = fold_build2 (BIT_AND_EXPR, sizetype, incr, + size_int (-align)); + incr = fold_convert (ptr_type_node, incr); + } + + gimplify_expr (&incr, pre_p, post_p, is_gimple_val, fb_rvalue); + addr = incr; + + if (BYTES_BIG_ENDIAN && size < rsize) + addr = fold_build_pointer_plus_hwi (incr, rsize - size); + + if (indirect) + { + addr = fold_convert (build_pointer_type (ptrtype), addr); + addr = build_va_arg_indirect_ref (addr); + } + + /* If the address isn't aligned properly for the type, we need a temporary. + FIXME: This is inefficient, usually we can do this in registers. */ + else if (align == 0 && TYPE_ALIGN (type) > BITS_PER_WORD) + { + tree tmp = create_tmp_var (type, "va_arg_tmp"); + tree dest_addr = build_fold_addr_expr (tmp); + tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY), + 3, dest_addr, addr, size_int (rsize)); + TREE_ADDRESSABLE (tmp) = 1; + gimplify_and_add (copy, pre_p); + addr = dest_addr; + } + + else + addr = fold_convert (ptrtype, addr); + + incr = fold_build_pointer_plus_hwi (incr, rsize); + gimplify_assign (valist, incr, post_p); + + return build_va_arg_indirect_ref (addr); +} + +/* Implement the TARGET_VECTOR_MODE_SUPPORTED_P target hook. + Specify whether the vector mode is supported by the hardware. */ + +static bool +sparc_vector_mode_supported_p (machine_mode mode) +{ + return TARGET_VIS && VECTOR_MODE_P (mode) ? true : false; +} + +/* Implement the TARGET_VECTORIZE_PREFERRED_SIMD_MODE target hook. */ + +static machine_mode +sparc_preferred_simd_mode (scalar_mode mode) +{ + if (TARGET_VIS) + switch (mode) + { + case E_SImode: + return V2SImode; + case E_HImode: + return V4HImode; + case E_QImode: + return V8QImode; + + default:; + } + + return word_mode; +} + + /* Implement TARGET_CAN_FOLLOW_JUMP. */ + +static bool +sparc_can_follow_jump (const rtx_insn *follower, const rtx_insn *followee) +{ + /* Do not fold unconditional jumps that have been created for crossing + partition boundaries. */ + if (CROSSING_JUMP_P (followee) && !CROSSING_JUMP_P (follower)) + return false; + + return true; +} + +/* Return the string to output an unconditional branch to LABEL, which is + the operand number of the label. + + DEST is the destination insn (i.e. the label), INSN is the source. */ + +const char * +output_ubranch (rtx dest, rtx_insn *insn) +{ + static char string[64]; + bool v9_form = false; + int delta; + char *p; + + /* Even if we are trying to use cbcond for this, evaluate + whether we can use V9 branches as our backup plan. */ + delta = 5000000; + if (!CROSSING_JUMP_P (insn) && INSN_ADDRESSES_SET_P ()) + delta = (INSN_ADDRESSES (INSN_UID (dest)) + - INSN_ADDRESSES (INSN_UID (insn))); + + /* Leave some instructions for "slop". */ + if (TARGET_V9 && delta >= -260000 && delta < 260000) + v9_form = true; + + if (TARGET_CBCOND) + { + bool emit_nop = emit_cbcond_nop (insn); + bool far = false; + const char *rval; + + if (delta < -500 || delta > 500) + far = true; + + if (far) + { + if (v9_form) + rval = "ba,a,pt\t%%xcc, %l0"; + else + rval = "b,a\t%l0"; + } + else + { + if (emit_nop) + rval = "cwbe\t%%g0, %%g0, %l0\n\tnop"; + else + rval = "cwbe\t%%g0, %%g0, %l0"; + } + return rval; + } + + if (v9_form) + strcpy (string, "ba%*,pt\t%%xcc, "); + else + strcpy (string, "b%*\t"); + + p = strchr (string, '\0'); + *p++ = '%'; + *p++ = 'l'; + *p++ = '0'; + *p++ = '%'; + *p++ = '('; + *p = '\0'; + + return string; +} + +/* Return the string to output a conditional branch to LABEL, which is + the operand number of the label. OP is the conditional expression. + XEXP (OP, 0) is assumed to be a condition code register (integer or + floating point) and its mode specifies what kind of comparison we made. + + DEST is the destination insn (i.e. the label), INSN is the source. + + REVERSED is nonzero if we should reverse the sense of the comparison. + + ANNUL is nonzero if we should generate an annulling branch. */ + +const char * +output_cbranch (rtx op, rtx dest, int label, int reversed, int annul, + rtx_insn *insn) +{ + static char string[64]; + enum rtx_code code = GET_CODE (op); + rtx cc_reg = XEXP (op, 0); + machine_mode mode = GET_MODE (cc_reg); + const char *labelno, *branch; + int spaces = 8, far; + char *p; + + /* v9 branches are limited to +-1MB. If it is too far away, + change + + bne,pt %xcc, .LC30 + + to + + be,pn %xcc, .+12 + nop + ba .LC30 + + and + + fbne,a,pn %fcc2, .LC29 + + to + + fbe,pt %fcc2, .+16 + nop + ba .LC29 */ + + far = TARGET_V9 && (get_attr_length (insn) >= 3); + if (reversed ^ far) + { + /* Reversal of FP compares takes care -- an ordered compare + becomes an unordered compare and vice versa. */ + if (mode == CCFPmode || mode == CCFPEmode) + code = reverse_condition_maybe_unordered (code); + else + code = reverse_condition (code); + } + + /* Start by writing the branch condition. */ + if (mode == CCFPmode || mode == CCFPEmode) + { + switch (code) + { + case NE: + branch = "fbne"; + break; + case EQ: + branch = "fbe"; + break; + case GE: + branch = "fbge"; + break; + case GT: + branch = "fbg"; + break; + case LE: + branch = "fble"; + break; + case LT: + branch = "fbl"; + break; + case UNORDERED: + branch = "fbu"; + break; + case ORDERED: + branch = "fbo"; + break; + case UNGT: + branch = "fbug"; + break; + case UNLT: + branch = "fbul"; + break; + case UNEQ: + branch = "fbue"; + break; + case UNGE: + branch = "fbuge"; + break; + case UNLE: + branch = "fbule"; + break; + case LTGT: + branch = "fblg"; + break; + default: + gcc_unreachable (); + } + + /* ??? !v9: FP branches cannot be preceded by another floating point + insn. Because there is currently no concept of pre-delay slots, + we can fix this only by always emitting a nop before a floating + point branch. */ + + string[0] = '\0'; + if (! TARGET_V9) + strcpy (string, "nop\n\t"); + strcat (string, branch); + } + else + { + switch (code) + { + case NE: + if (mode == CCVmode || mode == CCXVmode) + branch = "bvs"; + else + branch = "bne"; + break; + case EQ: + if (mode == CCVmode || mode == CCXVmode) + branch = "bvc"; + else + branch = "be"; + break; + case GE: + if (mode == CCNZmode || mode == CCXNZmode) + branch = "bpos"; + else + branch = "bge"; + break; + case GT: + branch = "bg"; + break; + case LE: + branch = "ble"; + break; + case LT: + if (mode == CCNZmode || mode == CCXNZmode) + branch = "bneg"; + else + branch = "bl"; + break; + case GEU: + branch = "bgeu"; + break; + case GTU: + branch = "bgu"; + break; + case LEU: + branch = "bleu"; + break; + case LTU: + branch = "blu"; + break; + default: + gcc_unreachable (); + } + strcpy (string, branch); + } + spaces -= strlen (branch); + p = strchr (string, '\0'); + + /* Now add the annulling, the label, and a possible noop. */ + if (annul && ! far) + { + strcpy (p, ",a"); + p += 2; + spaces -= 2; + } + + if (TARGET_V9) + { + rtx note; + int v8 = 0; + + if (! far && insn && INSN_ADDRESSES_SET_P ()) + { + int delta = (INSN_ADDRESSES (INSN_UID (dest)) + - INSN_ADDRESSES (INSN_UID (insn))); + /* Leave some instructions for "slop". */ + if (delta < -260000 || delta >= 260000) + v8 = 1; + } + + switch (mode) + { + case E_CCmode: + case E_CCNZmode: + case E_CCCmode: + case E_CCVmode: + labelno = "%%icc, "; + if (v8) + labelno = ""; + break; + case E_CCXmode: + case E_CCXNZmode: + case E_CCXCmode: + case E_CCXVmode: + labelno = "%%xcc, "; + gcc_assert (!v8); + break; + case E_CCFPmode: + case E_CCFPEmode: + { + static char v9_fcc_labelno[] = "%%fccX, "; + /* Set the char indicating the number of the fcc reg to use. */ + v9_fcc_labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0'; + labelno = v9_fcc_labelno; + if (v8) + { + gcc_assert (REGNO (cc_reg) == SPARC_FCC_REG); + labelno = ""; + } + } + break; + default: + gcc_unreachable (); + } + + if (*labelno && insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX))) + { + strcpy (p, + ((profile_probability::from_reg_br_prob_note (XINT (note, 0)) + >= profile_probability::even ()) ^ far) + ? ",pt" : ",pn"); + p += 3; + spaces -= 3; + } + } + else + labelno = ""; + + if (spaces > 0) + *p++ = '\t'; + else + *p++ = ' '; + strcpy (p, labelno); + p = strchr (p, '\0'); + if (far) + { + strcpy (p, ".+12\n\t nop\n\tb\t"); + /* Skip the next insn if requested or + if we know that it will be a nop. */ + if (annul || ! final_sequence) + p[3] = '6'; + p += 14; + } + *p++ = '%'; + *p++ = 'l'; + *p++ = label + '0'; + *p++ = '%'; + *p++ = '#'; + *p = '\0'; + + return string; +} + +/* Emit a library call comparison between floating point X and Y. + COMPARISON is the operator to compare with (EQ, NE, GT, etc). + Return the new operator to be used in the comparison sequence. + + TARGET_ARCH64 uses _Qp_* functions, which use pointers to TFmode + values as arguments instead of the TFmode registers themselves, + that's why we cannot call emit_float_lib_cmp. */ + +rtx +sparc_emit_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison) +{ + const char *qpfunc; + rtx slot0, slot1, result, tem, tem2, libfunc; + machine_mode mode; + enum rtx_code new_comparison; + + switch (comparison) + { + case EQ: + qpfunc = (TARGET_ARCH64 ? "_Qp_feq" : "_Q_feq"); + break; + + case NE: + qpfunc = (TARGET_ARCH64 ? "_Qp_fne" : "_Q_fne"); + break; + + case GT: + qpfunc = (TARGET_ARCH64 ? "_Qp_fgt" : "_Q_fgt"); + break; + + case GE: + qpfunc = (TARGET_ARCH64 ? "_Qp_fge" : "_Q_fge"); + break; + + case LT: + qpfunc = (TARGET_ARCH64 ? "_Qp_flt" : "_Q_flt"); + break; + + case LE: + qpfunc = (TARGET_ARCH64 ? "_Qp_fle" : "_Q_fle"); + break; + + case ORDERED: + case UNORDERED: + case UNGT: + case UNLT: + case UNEQ: + case UNGE: + case UNLE: + case LTGT: + qpfunc = (TARGET_ARCH64 ? "_Qp_cmp" : "_Q_cmp"); + break; + + default: + gcc_unreachable (); + } + + if (TARGET_ARCH64) + { + if (MEM_P (x)) + { + tree expr = MEM_EXPR (x); + if (expr) + mark_addressable (expr); + slot0 = x; + } + else + { + slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode)); + emit_move_insn (slot0, x); + } + + if (MEM_P (y)) + { + tree expr = MEM_EXPR (y); + if (expr) + mark_addressable (expr); + slot1 = y; + } + else + { + slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode)); + emit_move_insn (slot1, y); + } + + libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc); + emit_library_call (libfunc, LCT_NORMAL, + DImode, + XEXP (slot0, 0), Pmode, + XEXP (slot1, 0), Pmode); + mode = DImode; + } + else + { + libfunc = gen_rtx_SYMBOL_REF (Pmode, qpfunc); + emit_library_call (libfunc, LCT_NORMAL, + SImode, + x, TFmode, y, TFmode); + mode = SImode; + } + + + /* Immediately move the result of the libcall into a pseudo + register so reload doesn't clobber the value if it needs + the return register for a spill reg. */ + result = gen_reg_rtx (mode); + emit_move_insn (result, hard_libcall_value (mode, libfunc)); + + switch (comparison) + { + default: + return gen_rtx_NE (VOIDmode, result, const0_rtx); + case ORDERED: + case UNORDERED: + new_comparison = (comparison == UNORDERED ? EQ : NE); + return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, GEN_INT(3)); + case UNGT: + case UNGE: + new_comparison = (comparison == UNGT ? GT : NE); + return gen_rtx_fmt_ee (new_comparison, VOIDmode, result, const1_rtx); + case UNLE: + return gen_rtx_NE (VOIDmode, result, const2_rtx); + case UNLT: + tem = gen_reg_rtx (mode); + if (TARGET_ARCH32) + emit_insn (gen_andsi3 (tem, result, const1_rtx)); + else + emit_insn (gen_anddi3 (tem, result, const1_rtx)); + return gen_rtx_NE (VOIDmode, tem, const0_rtx); + case UNEQ: + case LTGT: + tem = gen_reg_rtx (mode); + if (TARGET_ARCH32) + emit_insn (gen_addsi3 (tem, result, const1_rtx)); + else + emit_insn (gen_adddi3 (tem, result, const1_rtx)); + tem2 = gen_reg_rtx (mode); + if (TARGET_ARCH32) + emit_insn (gen_andsi3 (tem2, tem, const2_rtx)); + else + emit_insn (gen_anddi3 (tem2, tem, const2_rtx)); + new_comparison = (comparison == UNEQ ? EQ : NE); + return gen_rtx_fmt_ee (new_comparison, VOIDmode, tem2, const0_rtx); + } + + gcc_unreachable (); +} + +/* Generate an unsigned DImode to FP conversion. This is the same code + optabs would emit if we didn't have TFmode patterns. */ + +void +sparc_emit_floatunsdi (rtx *operands, machine_mode mode) +{ + rtx i0, i1, f0, in, out; + + out = operands[0]; + in = force_reg (DImode, operands[1]); + rtx_code_label *neglab = gen_label_rtx (); + rtx_code_label *donelab = gen_label_rtx (); + i0 = gen_reg_rtx (DImode); + i1 = gen_reg_rtx (DImode); + f0 = gen_reg_rtx (mode); + + emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab); + + emit_insn (gen_rtx_SET (out, gen_rtx_FLOAT (mode, in))); + emit_jump_insn (gen_jump (donelab)); + emit_barrier (); + + emit_label (neglab); + + emit_insn (gen_lshrdi3 (i0, in, const1_rtx)); + emit_insn (gen_anddi3 (i1, in, const1_rtx)); + emit_insn (gen_iordi3 (i0, i0, i1)); + emit_insn (gen_rtx_SET (f0, gen_rtx_FLOAT (mode, i0))); + emit_insn (gen_rtx_SET (out, gen_rtx_PLUS (mode, f0, f0))); + + emit_label (donelab); +} + +/* Generate an FP to unsigned DImode conversion. This is the same code + optabs would emit if we didn't have TFmode patterns. */ + +void +sparc_emit_fixunsdi (rtx *operands, machine_mode mode) +{ + rtx i0, i1, f0, in, out, limit; + + out = operands[0]; + in = force_reg (mode, operands[1]); + rtx_code_label *neglab = gen_label_rtx (); + rtx_code_label *donelab = gen_label_rtx (); + i0 = gen_reg_rtx (DImode); + i1 = gen_reg_rtx (DImode); + limit = gen_reg_rtx (mode); + f0 = gen_reg_rtx (mode); + + emit_move_insn (limit, + const_double_from_real_value ( + REAL_VALUE_ATOF ("9223372036854775808.0", mode), mode)); + emit_cmp_and_jump_insns (in, limit, GE, NULL_RTX, mode, 0, neglab); + + emit_insn (gen_rtx_SET (out, + gen_rtx_FIX (DImode, gen_rtx_FIX (mode, in)))); + emit_jump_insn (gen_jump (donelab)); + emit_barrier (); + + emit_label (neglab); + + emit_insn (gen_rtx_SET (f0, gen_rtx_MINUS (mode, in, limit))); + emit_insn (gen_rtx_SET (i0, + gen_rtx_FIX (DImode, gen_rtx_FIX (mode, f0)))); + emit_insn (gen_movdi (i1, const1_rtx)); + emit_insn (gen_ashldi3 (i1, i1, GEN_INT (63))); + emit_insn (gen_xordi3 (out, i0, i1)); + + emit_label (donelab); +} + +/* Return the string to output a compare and branch instruction to DEST. + DEST is the destination insn (i.e. the label), INSN is the source, + and OP is the conditional expression. */ + +const char * +output_cbcond (rtx op, rtx dest, rtx_insn *insn) +{ + machine_mode mode = GET_MODE (XEXP (op, 0)); + enum rtx_code code = GET_CODE (op); + const char *cond_str, *tmpl; + int far, emit_nop, len; + static char string[64]; + char size_char; + + /* Compare and Branch is limited to +-2KB. If it is too far away, + change + + cxbne X, Y, .LC30 + + to + + cxbe X, Y, .+16 + nop + ba,pt xcc, .LC30 + nop */ + + len = get_attr_length (insn); + + far = len == 4; + emit_nop = len == 2; + + if (far) + code = reverse_condition (code); + + size_char = ((mode == SImode) ? 'w' : 'x'); + + switch (code) + { + case NE: + cond_str = "ne"; + break; + + case EQ: + cond_str = "e"; + break; + + case GE: + cond_str = "ge"; + break; + + case GT: + cond_str = "g"; + break; + + case LE: + cond_str = "le"; + break; + + case LT: + cond_str = "l"; + break; + + case GEU: + cond_str = "cc"; + break; + + case GTU: + cond_str = "gu"; + break; + + case LEU: + cond_str = "leu"; + break; + + case LTU: + cond_str = "cs"; + break; + + default: + gcc_unreachable (); + } + + if (far) + { + int veryfar = 1, delta; + + if (INSN_ADDRESSES_SET_P ()) + { + delta = (INSN_ADDRESSES (INSN_UID (dest)) + - INSN_ADDRESSES (INSN_UID (insn))); + /* Leave some instructions for "slop". */ + if (delta >= -260000 && delta < 260000) + veryfar = 0; + } + + if (veryfar) + tmpl = "c%cb%s\t%%1, %%2, .+16\n\tnop\n\tb\t%%3\n\tnop"; + else + tmpl = "c%cb%s\t%%1, %%2, .+16\n\tnop\n\tba,pt\t%%%%xcc, %%3\n\tnop"; + } + else + { + if (emit_nop) + tmpl = "c%cb%s\t%%1, %%2, %%3\n\tnop"; + else + tmpl = "c%cb%s\t%%1, %%2, %%3"; + } + + snprintf (string, sizeof(string), tmpl, size_char, cond_str); + + return string; +} + +/* Return the string to output a conditional branch to LABEL, testing + register REG. LABEL is the operand number of the label; REG is the + operand number of the reg. OP is the conditional expression. The mode + of REG says what kind of comparison we made. + + DEST is the destination insn (i.e. the label), INSN is the source. + + REVERSED is nonzero if we should reverse the sense of the comparison. + + ANNUL is nonzero if we should generate an annulling branch. */ + +const char * +output_v9branch (rtx op, rtx dest, int reg, int label, int reversed, + int annul, rtx_insn *insn) +{ + static char string[64]; + enum rtx_code code = GET_CODE (op); + machine_mode mode = GET_MODE (XEXP (op, 0)); + rtx note; + int far; + char *p; + + /* branch on register are limited to +-128KB. If it is too far away, + change + + brnz,pt %g1, .LC30 + + to + + brz,pn %g1, .+12 + nop + ba,pt %xcc, .LC30 + + and + + brgez,a,pn %o1, .LC29 + + to + + brlz,pt %o1, .+16 + nop + ba,pt %xcc, .LC29 */ + + far = get_attr_length (insn) >= 3; + + /* If not floating-point or if EQ or NE, we can just reverse the code. */ + if (reversed ^ far) + code = reverse_condition (code); + + /* Only 64-bit versions of these instructions exist. */ + gcc_assert (mode == DImode); + + /* Start by writing the branch condition. */ + + switch (code) + { + case NE: + strcpy (string, "brnz"); + break; + + case EQ: + strcpy (string, "brz"); + break; + + case GE: + strcpy (string, "brgez"); + break; + + case LT: + strcpy (string, "brlz"); + break; + + case LE: + strcpy (string, "brlez"); + break; + + case GT: + strcpy (string, "brgz"); + break; + + default: + gcc_unreachable (); + } + + p = strchr (string, '\0'); + + /* Now add the annulling, reg, label, and nop. */ + if (annul && ! far) + { + strcpy (p, ",a"); + p += 2; + } + + if (insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX))) + { + strcpy (p, + ((profile_probability::from_reg_br_prob_note (XINT (note, 0)) + >= profile_probability::even ()) ^ far) + ? ",pt" : ",pn"); + p += 3; + } + + *p = p < string + 8 ? '\t' : ' '; + p++; + *p++ = '%'; + *p++ = '0' + reg; + *p++ = ','; + *p++ = ' '; + if (far) + { + int veryfar = 1, delta; + + if (INSN_ADDRESSES_SET_P ()) + { + delta = (INSN_ADDRESSES (INSN_UID (dest)) + - INSN_ADDRESSES (INSN_UID (insn))); + /* Leave some instructions for "slop". */ + if (delta >= -260000 && delta < 260000) + veryfar = 0; + } + + strcpy (p, ".+12\n\t nop\n\t"); + /* Skip the next insn if requested or + if we know that it will be a nop. */ + if (annul || ! final_sequence) + p[3] = '6'; + p += 12; + if (veryfar) + { + strcpy (p, "b\t"); + p += 2; + } + else + { + strcpy (p, "ba,pt\t%%xcc, "); + p += 13; + } + } + *p++ = '%'; + *p++ = 'l'; + *p++ = '0' + label; + *p++ = '%'; + *p++ = '#'; + *p = '\0'; + + return string; +} + +/* Return 1, if any of the registers of the instruction are %l[0-7] or %o[0-7]. + Such instructions cannot be used in the delay slot of return insn on v9. + If TEST is 0, also rename all %i[0-7] registers to their %o[0-7] counterparts. + */ + +static int +epilogue_renumber (register rtx *where, int test) +{ + register const char *fmt; + register int i; + register enum rtx_code code; + + if (*where == 0) + return 0; + + code = GET_CODE (*where); + + switch (code) + { + case REG: + if (REGNO (*where) >= 8 && REGNO (*where) < 24) /* oX or lX */ + return 1; + if (! test && REGNO (*where) >= 24 && REGNO (*where) < 32) + *where = gen_rtx_REG (GET_MODE (*where), OUTGOING_REGNO (REGNO(*where))); + /* fallthrough */ + case SCRATCH: + case CC0: + case PC: + case CONST_INT: + case CONST_WIDE_INT: + case CONST_DOUBLE: + return 0; + + /* Do not replace the frame pointer with the stack pointer because + it can cause the delayed instruction to load below the stack. + This occurs when instructions like: + + (set (reg/i:SI 24 %i0) + (mem/f:SI (plus:SI (reg/f:SI 30 %fp) + (const_int -20 [0xffffffec])) 0)) + + are in the return delayed slot. */ + case PLUS: + if (GET_CODE (XEXP (*where, 0)) == REG + && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM + && (GET_CODE (XEXP (*where, 1)) != CONST_INT + || INTVAL (XEXP (*where, 1)) < SPARC_STACK_BIAS)) + return 1; + break; + + case MEM: + if (SPARC_STACK_BIAS + && GET_CODE (XEXP (*where, 0)) == REG + && REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM) + return 1; + break; + + default: + break; + } + + fmt = GET_RTX_FORMAT (code); + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'E') + { + register int j; + for (j = XVECLEN (*where, i) - 1; j >= 0; j--) + if (epilogue_renumber (&(XVECEXP (*where, i, j)), test)) + return 1; + } + else if (fmt[i] == 'e' + && epilogue_renumber (&(XEXP (*where, i)), test)) + return 1; + } + return 0; +} + +/* Leaf functions and non-leaf functions have different needs. */ + +static const int +reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER; + +static const int +reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER; + +static const int *const reg_alloc_orders[] = { + reg_leaf_alloc_order, + reg_nonleaf_alloc_order}; + +void +order_regs_for_local_alloc (void) +{ + static int last_order_nonleaf = 1; + + if (df_regs_ever_live_p (15) != last_order_nonleaf) + { + last_order_nonleaf = !last_order_nonleaf; + memcpy ((char *) reg_alloc_order, + (const char *) reg_alloc_orders[last_order_nonleaf], + FIRST_PSEUDO_REGISTER * sizeof (int)); + } +} + +/* Return 1 if REG and MEM are legitimate enough to allow the various + MEM<-->REG splits to be run. */ + +int +sparc_split_reg_mem_legitimate (rtx reg, rtx mem) +{ + /* Punt if we are here by mistake. */ + gcc_assert (reload_completed); + + /* We must have an offsettable memory reference. */ + if (!offsettable_memref_p (mem)) + return 0; + + /* If we have legitimate args for ldd/std, we do not want + the split to happen. */ + if ((REGNO (reg) % 2) == 0 && mem_min_alignment (mem, 8)) + return 0; + + /* Success. */ + return 1; +} + +/* Split a REG <-- MEM move into a pair of moves in MODE. */ + +void +sparc_split_reg_mem (rtx dest, rtx src, machine_mode mode) +{ + rtx high_part = gen_highpart (mode, dest); + rtx low_part = gen_lowpart (mode, dest); + rtx word0 = adjust_address (src, mode, 0); + rtx word1 = adjust_address (src, mode, 4); + + if (reg_overlap_mentioned_p (high_part, word1)) + { + emit_move_insn_1 (low_part, word1); + emit_move_insn_1 (high_part, word0); + } + else + { + emit_move_insn_1 (high_part, word0); + emit_move_insn_1 (low_part, word1); + } +} + +/* Split a MEM <-- REG move into a pair of moves in MODE. */ + +void +sparc_split_mem_reg (rtx dest, rtx src, machine_mode mode) +{ + rtx word0 = adjust_address (dest, mode, 0); + rtx word1 = adjust_address (dest, mode, 4); + rtx high_part = gen_highpart (mode, src); + rtx low_part = gen_lowpart (mode, src); + + emit_move_insn_1 (word0, high_part); + emit_move_insn_1 (word1, low_part); +} + +/* Like sparc_split_reg_mem_legitimate but for REG <--> REG moves. */ + +int +sparc_split_reg_reg_legitimate (rtx reg1, rtx reg2) +{ + /* Punt if we are here by mistake. */ + gcc_assert (reload_completed); + + if (GET_CODE (reg1) == SUBREG) + reg1 = SUBREG_REG (reg1); + if (GET_CODE (reg1) != REG) + return 0; + const int regno1 = REGNO (reg1); + + if (GET_CODE (reg2) == SUBREG) + reg2 = SUBREG_REG (reg2); + if (GET_CODE (reg2) != REG) + return 0; + const int regno2 = REGNO (reg2); + + if (SPARC_INT_REG_P (regno1) && SPARC_INT_REG_P (regno2)) + return 1; + + if (TARGET_VIS3) + { + if ((SPARC_INT_REG_P (regno1) && SPARC_FP_REG_P (regno2)) + || (SPARC_FP_REG_P (regno1) && SPARC_INT_REG_P (regno2))) + return 1; + } + + return 0; +} + +/* Split a REG <--> REG move into a pair of moves in MODE. */ + +void +sparc_split_reg_reg (rtx dest, rtx src, machine_mode mode) +{ + rtx dest1 = gen_highpart (mode, dest); + rtx dest2 = gen_lowpart (mode, dest); + rtx src1 = gen_highpart (mode, src); + rtx src2 = gen_lowpart (mode, src); + + /* Now emit using the real source and destination we found, swapping + the order if we detect overlap. */ + if (reg_overlap_mentioned_p (dest1, src2)) + { + emit_move_insn_1 (dest2, src2); + emit_move_insn_1 (dest1, src1); + } + else + { + emit_move_insn_1 (dest1, src1); + emit_move_insn_1 (dest2, src2); + } +} + +/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1. + This makes them candidates for using ldd and std insns. + + Note reg1 and reg2 *must* be hard registers. */ + +int +registers_ok_for_ldd_peep (rtx reg1, rtx reg2) +{ + /* We might have been passed a SUBREG. */ + if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) + return 0; + + if (REGNO (reg1) % 2 != 0) + return 0; + + /* Integer ldd is deprecated in SPARC V9 */ + if (TARGET_V9 && SPARC_INT_REG_P (REGNO (reg1))) + return 0; + + return (REGNO (reg1) == REGNO (reg2) - 1); +} + +/* Return 1 if the addresses in mem1 and mem2 are suitable for use in + an ldd or std insn. + + This can only happen when addr1 and addr2, the addresses in mem1 + and mem2, are consecutive memory locations (addr1 + 4 == addr2). + addr1 must also be aligned on a 64-bit boundary. + + Also iff dependent_reg_rtx is not null it should not be used to + compute the address for mem1, i.e. we cannot optimize a sequence + like: + ld [%o0], %o0 + ld [%o0 + 4], %o1 + to + ldd [%o0], %o0 + nor: + ld [%g3 + 4], %g3 + ld [%g3], %g2 + to + ldd [%g3], %g2 + + But, note that the transformation from: + ld [%g2 + 4], %g3 + ld [%g2], %g2 + to + ldd [%g2], %g2 + is perfectly fine. Thus, the peephole2 patterns always pass us + the destination register of the first load, never the second one. + + For stores we don't have a similar problem, so dependent_reg_rtx is + NULL_RTX. */ + +int +mems_ok_for_ldd_peep (rtx mem1, rtx mem2, rtx dependent_reg_rtx) +{ + rtx addr1, addr2; + unsigned int reg1; + HOST_WIDE_INT offset1; + + /* The mems cannot be volatile. */ + if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2)) + return 0; + + /* MEM1 should be aligned on a 64-bit boundary. */ + if (MEM_ALIGN (mem1) < 64) + return 0; + + addr1 = XEXP (mem1, 0); + addr2 = XEXP (mem2, 0); + + /* Extract a register number and offset (if used) from the first addr. */ + if (GET_CODE (addr1) == PLUS) + { + /* If not a REG, return zero. */ + if (GET_CODE (XEXP (addr1, 0)) != REG) + return 0; + else + { + reg1 = REGNO (XEXP (addr1, 0)); + /* The offset must be constant! */ + if (GET_CODE (XEXP (addr1, 1)) != CONST_INT) + return 0; + offset1 = INTVAL (XEXP (addr1, 1)); + } + } + else if (GET_CODE (addr1) != REG) + return 0; + else + { + reg1 = REGNO (addr1); + /* This was a simple (mem (reg)) expression. Offset is 0. */ + offset1 = 0; + } + + /* Make sure the second address is a (mem (plus (reg) (const_int). */ + if (GET_CODE (addr2) != PLUS) + return 0; + + if (GET_CODE (XEXP (addr2, 0)) != REG + || GET_CODE (XEXP (addr2, 1)) != CONST_INT) + return 0; + + if (reg1 != REGNO (XEXP (addr2, 0))) + return 0; + + if (dependent_reg_rtx != NULL_RTX && reg1 == REGNO (dependent_reg_rtx)) + return 0; + + /* The first offset must be evenly divisible by 8 to ensure the + address is 64-bit aligned. */ + if (offset1 % 8 != 0) + return 0; + + /* The offset for the second addr must be 4 more than the first addr. */ + if (INTVAL (XEXP (addr2, 1)) != offset1 + 4) + return 0; + + /* All the tests passed. addr1 and addr2 are valid for ldd and std + instructions. */ + return 1; +} + +/* Return the widened memory access made of MEM1 and MEM2 in MODE. */ + +rtx +widen_mem_for_ldd_peep (rtx mem1, rtx mem2, machine_mode mode) +{ + rtx x = widen_memory_access (mem1, mode, 0); + MEM_NOTRAP_P (x) = MEM_NOTRAP_P (mem1) && MEM_NOTRAP_P (mem2); + return x; +} + +/* Return 1 if reg is a pseudo, or is the first register in + a hard register pair. This makes it suitable for use in + ldd and std insns. */ + +int +register_ok_for_ldd (rtx reg) +{ + /* We might have been passed a SUBREG. */ + if (!REG_P (reg)) + return 0; + + if (REGNO (reg) < FIRST_PSEUDO_REGISTER) + return (REGNO (reg) % 2 == 0); + + return 1; +} + +/* Return 1 if OP, a MEM, has an address which is known to be + aligned to an 8-byte boundary. */ + +int +memory_ok_for_ldd (rtx op) +{ + /* In 64-bit mode, we assume that the address is word-aligned. */ + if (TARGET_ARCH32 && !mem_min_alignment (op, 8)) + return 0; + + if (! can_create_pseudo_p () + && !strict_memory_address_p (Pmode, XEXP (op, 0))) + return 0; + + return 1; +} + +/* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P. */ + +static bool +sparc_print_operand_punct_valid_p (unsigned char code) +{ + if (code == '#' + || code == '*' + || code == '(' + || code == ')' + || code == '_' + || code == '&') + return true; + + return false; +} + +/* Implement TARGET_PRINT_OPERAND. + Print operand X (an rtx) in assembler syntax to file FILE. + CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. + For `%' followed by punctuation, CODE is the punctuation and X is null. */ + +static void +sparc_print_operand (FILE *file, rtx x, int code) +{ + const char *s; + + switch (code) + { + case '#': + /* Output an insn in a delay slot. */ + if (final_sequence) + sparc_indent_opcode = 1; + else + fputs ("\n\t nop", file); + return; + case '*': + /* Output an annul flag if there's nothing for the delay slot and we + are optimizing. This is always used with '(' below. + Sun OS 4.1.1 dbx can't handle an annulled unconditional branch; + this is a dbx bug. So, we only do this when optimizing. + On UltraSPARC, a branch in a delay slot causes a pipeline flush. + Always emit a nop in case the next instruction is a branch. */ + if (! final_sequence && (optimize && (int)sparc_cpu < PROCESSOR_V9)) + fputs (",a", file); + return; + case '(': + /* Output a 'nop' if there's nothing for the delay slot and we are + not optimizing. This is always used with '*' above. */ + if (! final_sequence && ! (optimize && (int)sparc_cpu < PROCESSOR_V9)) + fputs ("\n\t nop", file); + else if (final_sequence) + sparc_indent_opcode = 1; + return; + case ')': + /* Output the right displacement from the saved PC on function return. + The caller may have placed an "unimp" insn immediately after the call + so we have to account for it. This insn is used in the 32-bit ABI + when calling a function that returns a non zero-sized structure. The + 64-bit ABI doesn't have it. Be careful to have this test be the same + as that for the call. The exception is when sparc_std_struct_return + is enabled, the psABI is followed exactly and the adjustment is made + by the code in sparc_struct_value_rtx. The call emitted is the same + when sparc_std_struct_return is enabled. */ + if (!TARGET_ARCH64 + && cfun->returns_struct + && !sparc_std_struct_return + && DECL_SIZE (DECL_RESULT (current_function_decl)) + && TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) + == INTEGER_CST + && !integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl)))) + fputs ("12", file); + else + fputc ('8', file); + return; + case '_': + /* Output the Embedded Medium/Anywhere code model base register. */ + fputs (EMBMEDANY_BASE_REG, file); + return; + case '&': + /* Print some local dynamic TLS name. */ + if (const char *name = get_some_local_dynamic_name ()) + assemble_name (file, name); + else + output_operand_lossage ("'%%&' used without any " + "local dynamic TLS references"); + return; + + case 'Y': + /* Adjust the operand to take into account a RESTORE operation. */ + if (GET_CODE (x) == CONST_INT) + break; + else if (GET_CODE (x) != REG) + output_operand_lossage ("invalid %%Y operand"); + else if (REGNO (x) < 8) + fputs (reg_names[REGNO (x)], file); + else if (REGNO (x) >= 24 && REGNO (x) < 32) + fputs (reg_names[REGNO (x)-16], file); + else + output_operand_lossage ("invalid %%Y operand"); + return; + case 'L': + /* Print out the low order register name of a register pair. */ + if (WORDS_BIG_ENDIAN) + fputs (reg_names[REGNO (x)+1], file); + else + fputs (reg_names[REGNO (x)], file); + return; + case 'H': + /* Print out the high order register name of a register pair. */ + if (WORDS_BIG_ENDIAN) + fputs (reg_names[REGNO (x)], file); + else + fputs (reg_names[REGNO (x)+1], file); + return; + case 'R': + /* Print out the second register name of a register pair or quad. + I.e., R (%o0) => %o1. */ + fputs (reg_names[REGNO (x)+1], file); + return; + case 'S': + /* Print out the third register name of a register quad. + I.e., S (%o0) => %o2. */ + fputs (reg_names[REGNO (x)+2], file); + return; + case 'T': + /* Print out the fourth register name of a register quad. + I.e., T (%o0) => %o3. */ + fputs (reg_names[REGNO (x)+3], file); + return; + case 'x': + /* Print a condition code register. */ + if (REGNO (x) == SPARC_ICC_REG) + { + switch (GET_MODE (x)) + { + case E_CCmode: + case E_CCNZmode: + case E_CCCmode: + case E_CCVmode: + s = "%icc"; + break; + case E_CCXmode: + case E_CCXNZmode: + case E_CCXCmode: + case E_CCXVmode: + s = "%xcc"; + break; + default: + gcc_unreachable (); + } + fputs (s, file); + } + else + /* %fccN register */ + fputs (reg_names[REGNO (x)], file); + return; + case 'm': + /* Print the operand's address only. */ + output_address (GET_MODE (x), XEXP (x, 0)); + return; + case 'r': + /* In this case we need a register. Use %g0 if the + operand is const0_rtx. */ + if (x == const0_rtx + || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x)))) + { + fputs ("%g0", file); + return; + } + else + break; + + case 'A': + switch (GET_CODE (x)) + { + case IOR: + s = "or"; + break; + case AND: + s = "and"; + break; + case XOR: + s = "xor"; + break; + default: + output_operand_lossage ("invalid %%A operand"); + s = ""; + break; + } + fputs (s, file); + return; + + case 'B': + switch (GET_CODE (x)) + { + case IOR: + s = "orn"; + break; + case AND: + s = "andn"; + break; + case XOR: + s = "xnor"; + break; + default: + output_operand_lossage ("invalid %%B operand"); + s = ""; + break; + } + fputs (s, file); + return; + + /* This is used by the conditional move instructions. */ + case 'C': + { + machine_mode mode = GET_MODE (XEXP (x, 0)); + switch (GET_CODE (x)) + { + case NE: + if (mode == CCVmode || mode == CCXVmode) + s = "vs"; + else + s = "ne"; + break; + case EQ: + if (mode == CCVmode || mode == CCXVmode) + s = "vc"; + else + s = "e"; + break; + case GE: + if (mode == CCNZmode || mode == CCXNZmode) + s = "pos"; + else + s = "ge"; + break; + case GT: + s = "g"; + break; + case LE: + s = "le"; + break; + case LT: + if (mode == CCNZmode || mode == CCXNZmode) + s = "neg"; + else + s = "l"; + break; + case GEU: + s = "geu"; + break; + case GTU: + s = "gu"; + break; + case LEU: + s = "leu"; + break; + case LTU: + s = "lu"; + break; + case LTGT: + s = "lg"; + break; + case UNORDERED: + s = "u"; + break; + case ORDERED: + s = "o"; + break; + case UNLT: + s = "ul"; + break; + case UNLE: + s = "ule"; + break; + case UNGT: + s = "ug"; + break; + case UNGE: + s = "uge" + ; break; + case UNEQ: + s = "ue"; + break; + default: + output_operand_lossage ("invalid %%C operand"); + s = ""; + break; + } + fputs (s, file); + return; + } + + /* This are used by the movr instruction pattern. */ + case 'D': + { + switch (GET_CODE (x)) + { + case NE: + s = "ne"; + break; + case EQ: + s = "e"; + break; + case GE: + s = "gez"; + break; + case LT: + s = "lz"; + break; + case LE: + s = "lez"; + break; + case GT: + s = "gz"; + break; + default: + output_operand_lossage ("invalid %%D operand"); + s = ""; + break; + } + fputs (s, file); + return; + } + + case 'b': + { + /* Print a sign-extended character. */ + int i = trunc_int_for_mode (INTVAL (x), QImode); + fprintf (file, "%d", i); + return; + } + + case 'f': + /* Operand must be a MEM; write its address. */ + if (GET_CODE (x) != MEM) + output_operand_lossage ("invalid %%f operand"); + output_address (GET_MODE (x), XEXP (x, 0)); + return; + + case 's': + { + /* Print a sign-extended 32-bit value. */ + HOST_WIDE_INT i; + if (GET_CODE(x) == CONST_INT) + i = INTVAL (x); + else + { + output_operand_lossage ("invalid %%s operand"); + return; + } + i = trunc_int_for_mode (i, SImode); + fprintf (file, HOST_WIDE_INT_PRINT_DEC, i); + return; + } + + case 0: + /* Do nothing special. */ + break; + + default: + /* Undocumented flag. */ + output_operand_lossage ("invalid operand output code"); + } + + if (GET_CODE (x) == REG) + fputs (reg_names[REGNO (x)], file); + else if (GET_CODE (x) == MEM) + { + fputc ('[', file); + /* Poor Sun assembler doesn't understand absolute addressing. */ + if (CONSTANT_P (XEXP (x, 0))) + fputs ("%g0+", file); + output_address (GET_MODE (x), XEXP (x, 0)); + fputc (']', file); + } + else if (GET_CODE (x) == HIGH) + { + fputs ("%hi(", file); + output_addr_const (file, XEXP (x, 0)); + fputc (')', file); + } + else if (GET_CODE (x) == LO_SUM) + { + sparc_print_operand (file, XEXP (x, 0), 0); + if (TARGET_CM_MEDMID) + fputs ("+%l44(", file); + else + fputs ("+%lo(", file); + output_addr_const (file, XEXP (x, 1)); + fputc (')', file); + } + else if (GET_CODE (x) == CONST_DOUBLE) + output_operand_lossage ("floating-point constant not a valid immediate operand"); + else + output_addr_const (file, x); +} + +/* Implement TARGET_PRINT_OPERAND_ADDRESS. */ + +static void +sparc_print_operand_address (FILE *file, machine_mode /*mode*/, rtx x) +{ + register rtx base, index = 0; + int offset = 0; + register rtx addr = x; + + if (REG_P (addr)) + fputs (reg_names[REGNO (addr)], file); + else if (GET_CODE (addr) == PLUS) + { + if (CONST_INT_P (XEXP (addr, 0))) + offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); + else if (CONST_INT_P (XEXP (addr, 1))) + offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); + else + base = XEXP (addr, 0), index = XEXP (addr, 1); + if (GET_CODE (base) == LO_SUM) + { + gcc_assert (USE_AS_OFFSETABLE_LO10 + && TARGET_ARCH64 + && ! TARGET_CM_MEDMID); + output_operand (XEXP (base, 0), 0); + fputs ("+%lo(", file); + output_address (VOIDmode, XEXP (base, 1)); + fprintf (file, ")+%d", offset); + } + else + { + fputs (reg_names[REGNO (base)], file); + if (index == 0) + fprintf (file, "%+d", offset); + else if (REG_P (index)) + fprintf (file, "+%s", reg_names[REGNO (index)]); + else if (GET_CODE (index) == SYMBOL_REF + || GET_CODE (index) == LABEL_REF + || GET_CODE (index) == CONST) + fputc ('+', file), output_addr_const (file, index); + else gcc_unreachable (); + } + } + else if (GET_CODE (addr) == MINUS + && GET_CODE (XEXP (addr, 1)) == LABEL_REF) + { + output_addr_const (file, XEXP (addr, 0)); + fputs ("-(", file); + output_addr_const (file, XEXP (addr, 1)); + fputs ("-.)", file); + } + else if (GET_CODE (addr) == LO_SUM) + { + output_operand (XEXP (addr, 0), 0); + if (TARGET_CM_MEDMID) + fputs ("+%l44(", file); + else + fputs ("+%lo(", file); + output_address (VOIDmode, XEXP (addr, 1)); + fputc (')', file); + } + else if (flag_pic + && GET_CODE (addr) == CONST + && GET_CODE (XEXP (addr, 0)) == MINUS + && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST + && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS + && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) + { + addr = XEXP (addr, 0); + output_addr_const (file, XEXP (addr, 0)); + /* Group the args of the second CONST in parenthesis. */ + fputs ("-(", file); + /* Skip past the second CONST--it does nothing for us. */ + output_addr_const (file, XEXP (XEXP (addr, 1), 0)); + /* Close the parenthesis. */ + fputc (')', file); + } + else + { + output_addr_const (file, addr); + } +} + +/* Target hook for assembling integer objects. The sparc version has + special handling for aligned DI-mode objects. */ + +static bool +sparc_assemble_integer (rtx x, unsigned int size, int aligned_p) +{ + /* ??? We only output .xword's for symbols and only then in environments + where the assembler can handle them. */ + if (aligned_p && size == 8 && GET_CODE (x) != CONST_INT) + { + if (TARGET_V9) + { + assemble_integer_with_op ("\t.xword\t", x); + return true; + } + else + { + assemble_aligned_integer (4, const0_rtx); + assemble_aligned_integer (4, x); + return true; + } + } + return default_assemble_integer (x, size, aligned_p); +} + +/* Return the value of a code used in the .proc pseudo-op that says + what kind of result this function returns. For non-C types, we pick + the closest C type. */ + +#ifndef SHORT_TYPE_SIZE +#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2) +#endif + +#ifndef INT_TYPE_SIZE +#define INT_TYPE_SIZE BITS_PER_WORD +#endif + +#ifndef LONG_TYPE_SIZE +#define LONG_TYPE_SIZE BITS_PER_WORD +#endif + +#ifndef LONG_LONG_TYPE_SIZE +#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2) +#endif + +#ifndef FLOAT_TYPE_SIZE +#define FLOAT_TYPE_SIZE BITS_PER_WORD +#endif + +#ifndef DOUBLE_TYPE_SIZE +#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) +#endif + +#ifndef LONG_DOUBLE_TYPE_SIZE +#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) +#endif + +unsigned long +sparc_type_code (register tree type) +{ + register unsigned long qualifiers = 0; + register unsigned shift; + + /* Only the first 30 bits of the qualifier are valid. We must refrain from + setting more, since some assemblers will give an error for this. Also, + we must be careful to avoid shifts of 32 bits or more to avoid getting + unpredictable results. */ + + for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type)) + { + switch (TREE_CODE (type)) + { + case ERROR_MARK: + return qualifiers; + + case ARRAY_TYPE: + qualifiers |= (3 << shift); + break; + + case FUNCTION_TYPE: + case METHOD_TYPE: + qualifiers |= (2 << shift); + break; + + case POINTER_TYPE: + case REFERENCE_TYPE: + case OFFSET_TYPE: + qualifiers |= (1 << shift); + break; + + case RECORD_TYPE: + return (qualifiers | 8); + + case UNION_TYPE: + case QUAL_UNION_TYPE: + return (qualifiers | 9); + + case ENUMERAL_TYPE: + return (qualifiers | 10); + + case VOID_TYPE: + return (qualifiers | 16); + + case INTEGER_TYPE: + /* If this is a range type, consider it to be the underlying + type. */ + if (TREE_TYPE (type) != 0) + break; + + /* Carefully distinguish all the standard types of C, + without messing up if the language is not C. We do this by + testing TYPE_PRECISION and TYPE_UNSIGNED. The old code used to + look at both the names and the above fields, but that's redundant. + Any type whose size is between two C types will be considered + to be the wider of the two types. Also, we do not have a + special code to use for "long long", so anything wider than + long is treated the same. Note that we can't distinguish + between "int" and "long" in this code if they are the same + size, but that's fine, since neither can the assembler. */ + + if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE) + return (qualifiers | (TYPE_UNSIGNED (type) ? 12 : 2)); + + else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE) + return (qualifiers | (TYPE_UNSIGNED (type) ? 13 : 3)); + + else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE) + return (qualifiers | (TYPE_UNSIGNED (type) ? 14 : 4)); + + else + return (qualifiers | (TYPE_UNSIGNED (type) ? 15 : 5)); + + case REAL_TYPE: + /* If this is a range type, consider it to be the underlying + type. */ + if (TREE_TYPE (type) != 0) + break; + + /* Carefully distinguish all the standard types of C, + without messing up if the language is not C. */ + + if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE) + return (qualifiers | 6); + + else + return (qualifiers | 7); + + case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */ + /* ??? We need to distinguish between double and float complex types, + but I don't know how yet because I can't reach this code from + existing front-ends. */ + return (qualifiers | 7); /* Who knows? */ + + case VECTOR_TYPE: + case BOOLEAN_TYPE: /* Boolean truth value type. */ + case LANG_TYPE: + case NULLPTR_TYPE: + return qualifiers; + + default: + gcc_unreachable (); /* Not a type! */ + } + } + + return qualifiers; +} + +/* Nested function support. */ + +/* Emit RTL insns to initialize the variable parts of a trampoline. + FNADDR is an RTX for the address of the function's pure code. + CXT is an RTX for the static chain value for the function. + + This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi + (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes + (to store insns). This is a bit excessive. Perhaps a different + mechanism would be better here. + + Emit enough FLUSH insns to synchronize the data and instruction caches. */ + +static void +sparc32_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt) +{ + /* SPARC 32-bit trampoline: + + sethi %hi(fn), %g1 + sethi %hi(static), %g2 + jmp %g1+%lo(fn) + or %g2, %lo(static), %g2 + + SETHI i,r = 00rr rrr1 00ii iiii iiii iiii iiii iiii + JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii + */ + + emit_move_insn + (adjust_address (m_tramp, SImode, 0), + expand_binop (SImode, ior_optab, + expand_shift (RSHIFT_EXPR, SImode, fnaddr, 10, 0, 1), + GEN_INT (trunc_int_for_mode (0x03000000, SImode)), + NULL_RTX, 1, OPTAB_DIRECT)); + + emit_move_insn + (adjust_address (m_tramp, SImode, 4), + expand_binop (SImode, ior_optab, + expand_shift (RSHIFT_EXPR, SImode, cxt, 10, 0, 1), + GEN_INT (trunc_int_for_mode (0x05000000, SImode)), + NULL_RTX, 1, OPTAB_DIRECT)); + + emit_move_insn + (adjust_address (m_tramp, SImode, 8), + expand_binop (SImode, ior_optab, + expand_and (SImode, fnaddr, GEN_INT (0x3ff), NULL_RTX), + GEN_INT (trunc_int_for_mode (0x81c06000, SImode)), + NULL_RTX, 1, OPTAB_DIRECT)); + + emit_move_insn + (adjust_address (m_tramp, SImode, 12), + expand_binop (SImode, ior_optab, + expand_and (SImode, cxt, GEN_INT (0x3ff), NULL_RTX), + GEN_INT (trunc_int_for_mode (0x8410a000, SImode)), + NULL_RTX, 1, OPTAB_DIRECT)); + + /* On UltraSPARC a flush flushes an entire cache line. The trampoline is + aligned on a 16 byte boundary so one flush clears it all. */ + emit_insn (gen_flushsi (validize_mem (adjust_address (m_tramp, SImode, 0)))); + if (sparc_cpu != PROCESSOR_ULTRASPARC + && sparc_cpu != PROCESSOR_ULTRASPARC3 + && sparc_cpu != PROCESSOR_NIAGARA + && sparc_cpu != PROCESSOR_NIAGARA2 + && sparc_cpu != PROCESSOR_NIAGARA3 + && sparc_cpu != PROCESSOR_NIAGARA4 + && sparc_cpu != PROCESSOR_NIAGARA7 + && sparc_cpu != PROCESSOR_M8) + emit_insn (gen_flushsi (validize_mem (adjust_address (m_tramp, SImode, 8)))); + + /* Call __enable_execute_stack after writing onto the stack to make sure + the stack address is accessible. */ +#ifdef HAVE_ENABLE_EXECUTE_STACK + emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), + LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode); +#endif + +} + +/* The 64-bit version is simpler because it makes more sense to load the + values as "immediate" data out of the trampoline. It's also easier since + we can read the PC without clobbering a register. */ + +static void +sparc64_initialize_trampoline (rtx m_tramp, rtx fnaddr, rtx cxt) +{ + /* SPARC 64-bit trampoline: + + rd %pc, %g1 + ldx [%g1+24], %g5 + jmp %g5 + ldx [%g1+16], %g5 + +16 bytes data + */ + + emit_move_insn (adjust_address (m_tramp, SImode, 0), + GEN_INT (trunc_int_for_mode (0x83414000, SImode))); + emit_move_insn (adjust_address (m_tramp, SImode, 4), + GEN_INT (trunc_int_for_mode (0xca586018, SImode))); + emit_move_insn (adjust_address (m_tramp, SImode, 8), + GEN_INT (trunc_int_for_mode (0x81c14000, SImode))); + emit_move_insn (adjust_address (m_tramp, SImode, 12), + GEN_INT (trunc_int_for_mode (0xca586010, SImode))); + emit_move_insn (adjust_address (m_tramp, DImode, 16), cxt); + emit_move_insn (adjust_address (m_tramp, DImode, 24), fnaddr); + emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 0)))); + + if (sparc_cpu != PROCESSOR_ULTRASPARC + && sparc_cpu != PROCESSOR_ULTRASPARC3 + && sparc_cpu != PROCESSOR_NIAGARA + && sparc_cpu != PROCESSOR_NIAGARA2 + && sparc_cpu != PROCESSOR_NIAGARA3 + && sparc_cpu != PROCESSOR_NIAGARA4 + && sparc_cpu != PROCESSOR_NIAGARA7 + && sparc_cpu != PROCESSOR_M8) + emit_insn (gen_flushdi (validize_mem (adjust_address (m_tramp, DImode, 8)))); + + /* Call __enable_execute_stack after writing onto the stack to make sure + the stack address is accessible. */ +#ifdef HAVE_ENABLE_EXECUTE_STACK + emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), + LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode); +#endif +} + +/* Worker for TARGET_TRAMPOLINE_INIT. */ + +static void +sparc_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt) +{ + rtx fnaddr = force_reg (Pmode, XEXP (DECL_RTL (fndecl), 0)); + cxt = force_reg (Pmode, cxt); + if (TARGET_ARCH64) + sparc64_initialize_trampoline (m_tramp, fnaddr, cxt); + else + sparc32_initialize_trampoline (m_tramp, fnaddr, cxt); +} + +/* Adjust the cost of a scheduling dependency. Return the new cost of + a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ + +static int +supersparc_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn, + int cost) +{ + enum attr_type insn_type; + + if (recog_memoized (insn) < 0) + return cost; + + insn_type = get_attr_type (insn); + + if (dep_type == 0) + { + /* Data dependency; DEP_INSN writes a register that INSN reads some + cycles later. */ + + /* if a load, then the dependence must be on the memory address; + add an extra "cycle". Note that the cost could be two cycles + if the reg was written late in an instruction group; we ca not tell + here. */ + if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD) + return cost + 3; + + /* Get the delay only if the address of the store is the dependence. */ + if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE) + { + rtx pat = PATTERN(insn); + rtx dep_pat = PATTERN (dep_insn); + + if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) + return cost; /* This should not happen! */ + + /* The dependency between the two instructions was on the data that + is being stored. Assume that this implies that the address of the + store is not dependent. */ + if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) + return cost; + + return cost + 3; /* An approximation. */ + } + + /* A shift instruction cannot receive its data from an instruction + in the same cycle; add a one cycle penalty. */ + if (insn_type == TYPE_SHIFT) + return cost + 3; /* Split before cascade into shift. */ + } + else + { + /* Anti- or output- dependency; DEP_INSN reads/writes a register that + INSN writes some cycles later. */ + + /* These are only significant for the fpu unit; writing a fp reg before + the fpu has finished with it stalls the processor. */ + + /* Reusing an integer register causes no problems. */ + if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) + return 0; + } + + return cost; +} + +static int +hypersparc_adjust_cost (rtx_insn *insn, int dtype, rtx_insn *dep_insn, + int cost) +{ + enum attr_type insn_type, dep_type; + rtx pat = PATTERN(insn); + rtx dep_pat = PATTERN (dep_insn); + + if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0) + return cost; + + insn_type = get_attr_type (insn); + dep_type = get_attr_type (dep_insn); + + switch (dtype) + { + case 0: + /* Data dependency; DEP_INSN writes a register that INSN reads some + cycles later. */ + + switch (insn_type) + { + case TYPE_STORE: + case TYPE_FPSTORE: + /* Get the delay iff the address of the store is the dependence. */ + if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) + return cost; + + if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) + return cost; + return cost + 3; + + case TYPE_LOAD: + case TYPE_SLOAD: + case TYPE_FPLOAD: + /* If a load, then the dependence must be on the memory address. If + the addresses aren't equal, then it might be a false dependency */ + if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE) + { + if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET + || GET_CODE (SET_DEST (dep_pat)) != MEM + || GET_CODE (SET_SRC (pat)) != MEM + || ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0), + XEXP (SET_SRC (pat), 0))) + return cost + 2; + + return cost + 8; + } + break; + + case TYPE_BRANCH: + /* Compare to branch latency is 0. There is no benefit from + separating compare and branch. */ + if (dep_type == TYPE_COMPARE) + return 0; + /* Floating point compare to branch latency is less than + compare to conditional move. */ + if (dep_type == TYPE_FPCMP) + return cost - 1; + break; + default: + break; + } + break; + + case REG_DEP_ANTI: + /* Anti-dependencies only penalize the fpu unit. */ + if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) + return 0; + break; + + default: + break; + } + + return cost; +} + +static int +sparc_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep, int cost, + unsigned int) +{ + switch (sparc_cpu) + { + case PROCESSOR_SUPERSPARC: + cost = supersparc_adjust_cost (insn, dep_type, dep, cost); + break; + case PROCESSOR_HYPERSPARC: + case PROCESSOR_SPARCLITE86X: + cost = hypersparc_adjust_cost (insn, dep_type, dep, cost); + break; + default: + break; + } + return cost; +} + +static void +sparc_sched_init (FILE *dump ATTRIBUTE_UNUSED, + int sched_verbose ATTRIBUTE_UNUSED, + int max_ready ATTRIBUTE_UNUSED) +{} + +static int +sparc_use_sched_lookahead (void) +{ + switch (sparc_cpu) + { + case PROCESSOR_ULTRASPARC: + case PROCESSOR_ULTRASPARC3: + return 4; + case PROCESSOR_SUPERSPARC: + case PROCESSOR_HYPERSPARC: + case PROCESSOR_SPARCLITE86X: + return 3; + case PROCESSOR_NIAGARA4: + case PROCESSOR_NIAGARA7: + case PROCESSOR_M8: + return 2; + case PROCESSOR_NIAGARA: + case PROCESSOR_NIAGARA2: + case PROCESSOR_NIAGARA3: + default: + return 0; + } +} + +static int +sparc_issue_rate (void) +{ + switch (sparc_cpu) + { + case PROCESSOR_ULTRASPARC: + case PROCESSOR_ULTRASPARC3: + case PROCESSOR_M8: + return 4; + case PROCESSOR_SUPERSPARC: + return 3; + case PROCESSOR_HYPERSPARC: + case PROCESSOR_SPARCLITE86X: + case PROCESSOR_V9: + /* Assume V9 processors are capable of at least dual-issue. */ + case PROCESSOR_NIAGARA4: + case PROCESSOR_NIAGARA7: + return 2; + case PROCESSOR_NIAGARA: + case PROCESSOR_NIAGARA2: + case PROCESSOR_NIAGARA3: + default: + return 1; + } +} + +int +sparc_branch_cost (bool speed_p, bool predictable_p) +{ + if (!speed_p) + return 2; + + /* For pre-V9 processors we use a single value (usually 3) to take into + account the potential annulling of the delay slot (which ends up being + a bubble in the pipeline slot) plus a cycle to take into consideration + the instruction cache effects. + + On V9 and later processors, which have branch prediction facilities, + we take into account whether the branch is (easily) predictable. */ + const int cost = sparc_costs->branch_cost; + + switch (sparc_cpu) + { + case PROCESSOR_V9: + case PROCESSOR_ULTRASPARC: + case PROCESSOR_ULTRASPARC3: + case PROCESSOR_NIAGARA: + case PROCESSOR_NIAGARA2: + case PROCESSOR_NIAGARA3: + case PROCESSOR_NIAGARA4: + case PROCESSOR_NIAGARA7: + case PROCESSOR_M8: + return cost + (predictable_p ? 0 : 2); + + default: + return cost; + } +} + +static int +set_extends (rtx_insn *insn) +{ + register rtx pat = PATTERN (insn); + + switch (GET_CODE (SET_SRC (pat))) + { + /* Load and some shift instructions zero extend. */ + case MEM: + case ZERO_EXTEND: + /* sethi clears the high bits */ + case HIGH: + /* LO_SUM is used with sethi. sethi cleared the high + bits and the values used with lo_sum are positive */ + case LO_SUM: + /* Store flag stores 0 or 1 */ + case LT: case LTU: + case GT: case GTU: + case LE: case LEU: + case GE: case GEU: + case EQ: + case NE: + return 1; + case AND: + { + rtx op0 = XEXP (SET_SRC (pat), 0); + rtx op1 = XEXP (SET_SRC (pat), 1); + if (GET_CODE (op1) == CONST_INT) + return INTVAL (op1) >= 0; + if (GET_CODE (op0) != REG) + return 0; + if (sparc_check_64 (op0, insn) == 1) + return 1; + return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1); + } + case IOR: + case XOR: + { + rtx op0 = XEXP (SET_SRC (pat), 0); + rtx op1 = XEXP (SET_SRC (pat), 1); + if (GET_CODE (op0) != REG || sparc_check_64 (op0, insn) <= 0) + return 0; + if (GET_CODE (op1) == CONST_INT) + return INTVAL (op1) >= 0; + return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1); + } + case LSHIFTRT: + return GET_MODE (SET_SRC (pat)) == SImode; + /* Positive integers leave the high bits zero. */ + case CONST_INT: + return !(INTVAL (SET_SRC (pat)) & 0x80000000); + case ASHIFTRT: + case SIGN_EXTEND: + return - (GET_MODE (SET_SRC (pat)) == SImode); + case REG: + return sparc_check_64 (SET_SRC (pat), insn); + default: + return 0; + } +} + +/* We _ought_ to have only one kind per function, but... */ +static GTY(()) rtx sparc_addr_diff_list; +static GTY(()) rtx sparc_addr_list; + +void +sparc_defer_case_vector (rtx lab, rtx vec, int diff) +{ + vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec); + if (diff) + sparc_addr_diff_list + = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list); + else + sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list); +} + +static void +sparc_output_addr_vec (rtx vec) +{ + rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); + int idx, vlen = XVECLEN (body, 0); + +#ifdef ASM_OUTPUT_ADDR_VEC_START + ASM_OUTPUT_ADDR_VEC_START (asm_out_file); +#endif + +#ifdef ASM_OUTPUT_CASE_LABEL + ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), + NEXT_INSN (lab)); +#else + (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); +#endif + + for (idx = 0; idx < vlen; idx++) + { + ASM_OUTPUT_ADDR_VEC_ELT + (asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); + } + +#ifdef ASM_OUTPUT_ADDR_VEC_END + ASM_OUTPUT_ADDR_VEC_END (asm_out_file); +#endif +} + +static void +sparc_output_addr_diff_vec (rtx vec) +{ + rtx lab = XEXP (vec, 0), body = XEXP (vec, 1); + rtx base = XEXP (XEXP (body, 0), 0); + int idx, vlen = XVECLEN (body, 1); + +#ifdef ASM_OUTPUT_ADDR_VEC_START + ASM_OUTPUT_ADDR_VEC_START (asm_out_file); +#endif + +#ifdef ASM_OUTPUT_CASE_LABEL + ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab), + NEXT_INSN (lab)); +#else + (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab)); +#endif + + for (idx = 0; idx < vlen; idx++) + { + ASM_OUTPUT_ADDR_DIFF_ELT + (asm_out_file, + body, + CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), + CODE_LABEL_NUMBER (base)); + } + +#ifdef ASM_OUTPUT_ADDR_VEC_END + ASM_OUTPUT_ADDR_VEC_END (asm_out_file); +#endif +} + +static void +sparc_output_deferred_case_vectors (void) +{ + rtx t; + int align; + + if (sparc_addr_list == NULL_RTX + && sparc_addr_diff_list == NULL_RTX) + return; + + /* Align to cache line in the function's code section. */ + switch_to_section (current_function_section ()); + + align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); + if (align > 0) + ASM_OUTPUT_ALIGN (asm_out_file, align); + + for (t = sparc_addr_list; t ; t = XEXP (t, 1)) + sparc_output_addr_vec (XEXP (t, 0)); + for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1)) + sparc_output_addr_diff_vec (XEXP (t, 0)); + + sparc_addr_list = sparc_addr_diff_list = NULL_RTX; +} + +/* Return 0 if the high 32 bits of X (the low word of X, if DImode) are + unknown. Return 1 if the high bits are zero, -1 if the register is + sign extended. */ +int +sparc_check_64 (rtx x, rtx_insn *insn) +{ + /* If a register is set only once it is safe to ignore insns this + code does not know how to handle. The loop will either recognize + the single set and return the correct value or fail to recognize + it and return 0. */ + int set_once = 0; + rtx y = x; + + gcc_assert (GET_CODE (x) == REG); + + if (GET_MODE (x) == DImode) + y = gen_rtx_REG (SImode, REGNO (x) + WORDS_BIG_ENDIAN); + + if (flag_expensive_optimizations + && df && DF_REG_DEF_COUNT (REGNO (y)) == 1) + set_once = 1; + + if (insn == 0) + { + if (set_once) + insn = get_last_insn_anywhere (); + else + return 0; + } + + while ((insn = PREV_INSN (insn))) + { + switch (GET_CODE (insn)) + { + case JUMP_INSN: + case NOTE: + break; + case CODE_LABEL: + case CALL_INSN: + default: + if (! set_once) + return 0; + break; + case INSN: + { + rtx pat = PATTERN (insn); + if (GET_CODE (pat) != SET) + return 0; + if (rtx_equal_p (x, SET_DEST (pat))) + return set_extends (insn); + if (y && rtx_equal_p (y, SET_DEST (pat))) + return set_extends (insn); + if (reg_overlap_mentioned_p (SET_DEST (pat), y)) + return 0; + } + } + } + return 0; +} + +/* Output a wide shift instruction in V8+ mode. INSN is the instruction, + OPERANDS are its operands and OPCODE is the mnemonic to be used. */ + +const char * +output_v8plus_shift (rtx_insn *insn, rtx *operands, const char *opcode) +{ + static char asm_code[60]; + + /* The scratch register is only required when the destination + register is not a 64-bit global or out register. */ + if (which_alternative != 2) + operands[3] = operands[0]; + + /* We can only shift by constants <= 63. */ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); + + if (GET_CODE (operands[1]) == CONST_INT) + { + output_asm_insn ("mov\t%1, %3", operands); + } + else + { + output_asm_insn ("sllx\t%H1, 32, %3", operands); + if (sparc_check_64 (operands[1], insn) <= 0) + output_asm_insn ("srl\t%L1, 0, %L1", operands); + output_asm_insn ("or\t%L1, %3, %3", operands); + } + + strcpy (asm_code, opcode); + + if (which_alternative != 2) + return strcat (asm_code, "\t%0, %2, %L0\n\tsrlx\t%L0, 32, %H0"); + else + return + strcat (asm_code, "\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"); +} + +/* Output rtl to increment the profiler label LABELNO + for profiling a function entry. */ + +void +sparc_profile_hook (int labelno) +{ + char buf[32]; + rtx lab, fun; + + fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_FUNCTION); + if (NO_PROFILE_COUNTERS) + { + emit_library_call (fun, LCT_NORMAL, VOIDmode); + } + else + { + ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno); + lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf)); + emit_library_call (fun, LCT_NORMAL, VOIDmode, lab, Pmode); + } +} + +#ifdef TARGET_SOLARIS +/* Solaris implementation of TARGET_ASM_NAMED_SECTION. */ + +static void +sparc_solaris_elf_asm_named_section (const char *name, unsigned int flags, + tree decl ATTRIBUTE_UNUSED) +{ + if (HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE) + { + solaris_elf_asm_comdat_section (name, flags, decl); + return; + } + + fprintf (asm_out_file, "\t.section\t\"%s\"", name); + + if (!(flags & SECTION_DEBUG)) + fputs (",#alloc", asm_out_file); +#if HAVE_GAS_SECTION_EXCLUDE + if (flags & SECTION_EXCLUDE) + fputs (",#exclude", asm_out_file); +#endif + if (flags & SECTION_WRITE) + fputs (",#write", asm_out_file); + if (flags & SECTION_TLS) + fputs (",#tls", asm_out_file); + if (flags & SECTION_CODE) + fputs (",#execinstr", asm_out_file); + + if (flags & SECTION_NOTYPE) + ; + else if (flags & SECTION_BSS) + fputs (",#nobits", asm_out_file); + else + fputs (",#progbits", asm_out_file); + + fputc ('\n', asm_out_file); +} +#endif /* TARGET_SOLARIS */ + +/* We do not allow indirect calls to be optimized into sibling calls. + + We cannot use sibling calls when delayed branches are disabled + because they will likely require the call delay slot to be filled. + + Also, on SPARC 32-bit we cannot emit a sibling call when the + current function returns a structure. This is because the "unimp + after call" convention would cause the callee to return to the + wrong place. The generic code already disallows cases where the + function being called returns a structure. + + It may seem strange how this last case could occur. Usually there + is code after the call which jumps to epilogue code which dumps the + return value into the struct return area. That ought to invalidate + the sibling call right? Well, in the C++ case we can end up passing + the pointer to the struct return area to a constructor (which returns + void) and then nothing else happens. Such a sibling call would look + valid without the added check here. + + VxWorks PIC PLT entries require the global pointer to be initialized + on entry. We therefore can't emit sibling calls to them. */ +static bool +sparc_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED) +{ + return (decl + && flag_delayed_branch + && (TARGET_ARCH64 || ! cfun->returns_struct) + && !(TARGET_VXWORKS_RTP + && flag_pic + && !targetm.binds_local_p (decl))); +} + +/* libfunc renaming. */ + +static void +sparc_init_libfuncs (void) +{ + if (TARGET_ARCH32) + { + /* Use the subroutines that Sun's library provides for integer + multiply and divide. The `*' prevents an underscore from + being prepended by the compiler. .umul is a little faster + than .mul. */ + set_optab_libfunc (smul_optab, SImode, "*.umul"); + set_optab_libfunc (sdiv_optab, SImode, "*.div"); + set_optab_libfunc (udiv_optab, SImode, "*.udiv"); + set_optab_libfunc (smod_optab, SImode, "*.rem"); + set_optab_libfunc (umod_optab, SImode, "*.urem"); + + /* TFmode arithmetic. These names are part of the SPARC 32bit ABI. */ + set_optab_libfunc (add_optab, TFmode, "_Q_add"); + set_optab_libfunc (sub_optab, TFmode, "_Q_sub"); + set_optab_libfunc (neg_optab, TFmode, "_Q_neg"); + set_optab_libfunc (smul_optab, TFmode, "_Q_mul"); + set_optab_libfunc (sdiv_optab, TFmode, "_Q_div"); + + /* We can define the TFmode sqrt optab only if TARGET_FPU. This + is because with soft-float, the SFmode and DFmode sqrt + instructions will be absent, and the compiler will notice and + try to use the TFmode sqrt instruction for calls to the + builtin function sqrt, but this fails. */ + if (TARGET_FPU) + set_optab_libfunc (sqrt_optab, TFmode, "_Q_sqrt"); + + set_optab_libfunc (eq_optab, TFmode, "_Q_feq"); + set_optab_libfunc (ne_optab, TFmode, "_Q_fne"); + set_optab_libfunc (gt_optab, TFmode, "_Q_fgt"); + set_optab_libfunc (ge_optab, TFmode, "_Q_fge"); + set_optab_libfunc (lt_optab, TFmode, "_Q_flt"); + set_optab_libfunc (le_optab, TFmode, "_Q_fle"); + + set_conv_libfunc (sext_optab, TFmode, SFmode, "_Q_stoq"); + set_conv_libfunc (sext_optab, TFmode, DFmode, "_Q_dtoq"); + set_conv_libfunc (trunc_optab, SFmode, TFmode, "_Q_qtos"); + set_conv_libfunc (trunc_optab, DFmode, TFmode, "_Q_qtod"); + + set_conv_libfunc (sfix_optab, SImode, TFmode, "_Q_qtoi"); + set_conv_libfunc (ufix_optab, SImode, TFmode, "_Q_qtou"); + set_conv_libfunc (sfloat_optab, TFmode, SImode, "_Q_itoq"); + set_conv_libfunc (ufloat_optab, TFmode, SImode, "_Q_utoq"); + + if (DITF_CONVERSION_LIBFUNCS) + { + set_conv_libfunc (sfix_optab, DImode, TFmode, "_Q_qtoll"); + set_conv_libfunc (ufix_optab, DImode, TFmode, "_Q_qtoull"); + set_conv_libfunc (sfloat_optab, TFmode, DImode, "_Q_lltoq"); + set_conv_libfunc (ufloat_optab, TFmode, DImode, "_Q_ulltoq"); + } + + if (SUN_CONVERSION_LIBFUNCS) + { + set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll"); + set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull"); + set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll"); + set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull"); + } + } + if (TARGET_ARCH64) + { + /* In the SPARC 64bit ABI, SImode multiply and divide functions + do not exist in the library. Make sure the compiler does not + emit calls to them by accident. (It should always use the + hardware instructions.) */ + set_optab_libfunc (smul_optab, SImode, 0); + set_optab_libfunc (sdiv_optab, SImode, 0); + set_optab_libfunc (udiv_optab, SImode, 0); + set_optab_libfunc (smod_optab, SImode, 0); + set_optab_libfunc (umod_optab, SImode, 0); + + if (SUN_INTEGER_MULTIPLY_64) + { + set_optab_libfunc (smul_optab, DImode, "__mul64"); + set_optab_libfunc (sdiv_optab, DImode, "__div64"); + set_optab_libfunc (udiv_optab, DImode, "__udiv64"); + set_optab_libfunc (smod_optab, DImode, "__rem64"); + set_optab_libfunc (umod_optab, DImode, "__urem64"); + } + + if (SUN_CONVERSION_LIBFUNCS) + { + set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftol"); + set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoul"); + set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtol"); + set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoul"); + } + } +} + +/* SPARC builtins. */ +enum sparc_builtins +{ + /* FPU builtins. */ + SPARC_BUILTIN_LDFSR, + SPARC_BUILTIN_STFSR, + + /* VIS 1.0 builtins. */ + SPARC_BUILTIN_FPACK16, + SPARC_BUILTIN_FPACK32, + SPARC_BUILTIN_FPACKFIX, + SPARC_BUILTIN_FEXPAND, + SPARC_BUILTIN_FPMERGE, + SPARC_BUILTIN_FMUL8X16, + SPARC_BUILTIN_FMUL8X16AU, + SPARC_BUILTIN_FMUL8X16AL, + SPARC_BUILTIN_FMUL8SUX16, + SPARC_BUILTIN_FMUL8ULX16, + SPARC_BUILTIN_FMULD8SUX16, + SPARC_BUILTIN_FMULD8ULX16, + SPARC_BUILTIN_FALIGNDATAV4HI, + SPARC_BUILTIN_FALIGNDATAV8QI, + SPARC_BUILTIN_FALIGNDATAV2SI, + SPARC_BUILTIN_FALIGNDATADI, + SPARC_BUILTIN_WRGSR, + SPARC_BUILTIN_RDGSR, + SPARC_BUILTIN_ALIGNADDR, + SPARC_BUILTIN_ALIGNADDRL, + SPARC_BUILTIN_PDIST, + SPARC_BUILTIN_EDGE8, + SPARC_BUILTIN_EDGE8L, + SPARC_BUILTIN_EDGE16, + SPARC_BUILTIN_EDGE16L, + SPARC_BUILTIN_EDGE32, + SPARC_BUILTIN_EDGE32L, + SPARC_BUILTIN_FCMPLE16, + SPARC_BUILTIN_FCMPLE32, + SPARC_BUILTIN_FCMPNE16, + SPARC_BUILTIN_FCMPNE32, + SPARC_BUILTIN_FCMPGT16, + SPARC_BUILTIN_FCMPGT32, + SPARC_BUILTIN_FCMPEQ16, + SPARC_BUILTIN_FCMPEQ32, + SPARC_BUILTIN_FPADD16, + SPARC_BUILTIN_FPADD16S, + SPARC_BUILTIN_FPADD32, + SPARC_BUILTIN_FPADD32S, + SPARC_BUILTIN_FPSUB16, + SPARC_BUILTIN_FPSUB16S, + SPARC_BUILTIN_FPSUB32, + SPARC_BUILTIN_FPSUB32S, + SPARC_BUILTIN_ARRAY8, + SPARC_BUILTIN_ARRAY16, + SPARC_BUILTIN_ARRAY32, + + /* VIS 2.0 builtins. */ + SPARC_BUILTIN_EDGE8N, + SPARC_BUILTIN_EDGE8LN, + SPARC_BUILTIN_EDGE16N, + SPARC_BUILTIN_EDGE16LN, + SPARC_BUILTIN_EDGE32N, + SPARC_BUILTIN_EDGE32LN, + SPARC_BUILTIN_BMASK, + SPARC_BUILTIN_BSHUFFLEV4HI, + SPARC_BUILTIN_BSHUFFLEV8QI, + SPARC_BUILTIN_BSHUFFLEV2SI, + SPARC_BUILTIN_BSHUFFLEDI, + + /* VIS 3.0 builtins. */ + SPARC_BUILTIN_CMASK8, + SPARC_BUILTIN_CMASK16, + SPARC_BUILTIN_CMASK32, + SPARC_BUILTIN_FCHKSM16, + SPARC_BUILTIN_FSLL16, + SPARC_BUILTIN_FSLAS16, + SPARC_BUILTIN_FSRL16, + SPARC_BUILTIN_FSRA16, + SPARC_BUILTIN_FSLL32, + SPARC_BUILTIN_FSLAS32, + SPARC_BUILTIN_FSRL32, + SPARC_BUILTIN_FSRA32, + SPARC_BUILTIN_PDISTN, + SPARC_BUILTIN_FMEAN16, + SPARC_BUILTIN_FPADD64, + SPARC_BUILTIN_FPSUB64, + SPARC_BUILTIN_FPADDS16, + SPARC_BUILTIN_FPADDS16S, + SPARC_BUILTIN_FPSUBS16, + SPARC_BUILTIN_FPSUBS16S, + SPARC_BUILTIN_FPADDS32, + SPARC_BUILTIN_FPADDS32S, + SPARC_BUILTIN_FPSUBS32, + SPARC_BUILTIN_FPSUBS32S, + SPARC_BUILTIN_FUCMPLE8, + SPARC_BUILTIN_FUCMPNE8, + SPARC_BUILTIN_FUCMPGT8, + SPARC_BUILTIN_FUCMPEQ8, + SPARC_BUILTIN_FHADDS, + SPARC_BUILTIN_FHADDD, + SPARC_BUILTIN_FHSUBS, + SPARC_BUILTIN_FHSUBD, + SPARC_BUILTIN_FNHADDS, + SPARC_BUILTIN_FNHADDD, + SPARC_BUILTIN_UMULXHI, + SPARC_BUILTIN_XMULX, + SPARC_BUILTIN_XMULXHI, + + /* VIS 4.0 builtins. */ + SPARC_BUILTIN_FPADD8, + SPARC_BUILTIN_FPADDS8, + SPARC_BUILTIN_FPADDUS8, + SPARC_BUILTIN_FPADDUS16, + SPARC_BUILTIN_FPCMPLE8, + SPARC_BUILTIN_FPCMPGT8, + SPARC_BUILTIN_FPCMPULE16, + SPARC_BUILTIN_FPCMPUGT16, + SPARC_BUILTIN_FPCMPULE32, + SPARC_BUILTIN_FPCMPUGT32, + SPARC_BUILTIN_FPMAX8, + SPARC_BUILTIN_FPMAX16, + SPARC_BUILTIN_FPMAX32, + SPARC_BUILTIN_FPMAXU8, + SPARC_BUILTIN_FPMAXU16, + SPARC_BUILTIN_FPMAXU32, + SPARC_BUILTIN_FPMIN8, + SPARC_BUILTIN_FPMIN16, + SPARC_BUILTIN_FPMIN32, + SPARC_BUILTIN_FPMINU8, + SPARC_BUILTIN_FPMINU16, + SPARC_BUILTIN_FPMINU32, + SPARC_BUILTIN_FPSUB8, + SPARC_BUILTIN_FPSUBS8, + SPARC_BUILTIN_FPSUBUS8, + SPARC_BUILTIN_FPSUBUS16, + + /* VIS 4.0B builtins. */ + + /* Note that all the DICTUNPACK* entries should be kept + contiguous. */ + SPARC_BUILTIN_FIRST_DICTUNPACK, + SPARC_BUILTIN_DICTUNPACK8 = SPARC_BUILTIN_FIRST_DICTUNPACK, + SPARC_BUILTIN_DICTUNPACK16, + SPARC_BUILTIN_DICTUNPACK32, + SPARC_BUILTIN_LAST_DICTUNPACK = SPARC_BUILTIN_DICTUNPACK32, + + /* Note that all the FPCMP*SHL entries should be kept + contiguous. */ + SPARC_BUILTIN_FIRST_FPCMPSHL, + SPARC_BUILTIN_FPCMPLE8SHL = SPARC_BUILTIN_FIRST_FPCMPSHL, + SPARC_BUILTIN_FPCMPGT8SHL, + SPARC_BUILTIN_FPCMPEQ8SHL, + SPARC_BUILTIN_FPCMPNE8SHL, + SPARC_BUILTIN_FPCMPLE16SHL, + SPARC_BUILTIN_FPCMPGT16SHL, + SPARC_BUILTIN_FPCMPEQ16SHL, + SPARC_BUILTIN_FPCMPNE16SHL, + SPARC_BUILTIN_FPCMPLE32SHL, + SPARC_BUILTIN_FPCMPGT32SHL, + SPARC_BUILTIN_FPCMPEQ32SHL, + SPARC_BUILTIN_FPCMPNE32SHL, + SPARC_BUILTIN_FPCMPULE8SHL, + SPARC_BUILTIN_FPCMPUGT8SHL, + SPARC_BUILTIN_FPCMPULE16SHL, + SPARC_BUILTIN_FPCMPUGT16SHL, + SPARC_BUILTIN_FPCMPULE32SHL, + SPARC_BUILTIN_FPCMPUGT32SHL, + SPARC_BUILTIN_FPCMPDE8SHL, + SPARC_BUILTIN_FPCMPDE16SHL, + SPARC_BUILTIN_FPCMPDE32SHL, + SPARC_BUILTIN_FPCMPUR8SHL, + SPARC_BUILTIN_FPCMPUR16SHL, + SPARC_BUILTIN_FPCMPUR32SHL, + SPARC_BUILTIN_LAST_FPCMPSHL = SPARC_BUILTIN_FPCMPUR32SHL, + + SPARC_BUILTIN_MAX +}; + +static GTY (()) tree sparc_builtins[(int) SPARC_BUILTIN_MAX]; +static enum insn_code sparc_builtins_icode[(int) SPARC_BUILTIN_MAX]; + +/* Return true if OPVAL can be used for operand OPNUM of instruction ICODE. + The instruction should require a constant operand of some sort. The + function prints an error if OPVAL is not valid. */ + +static int +check_constant_argument (enum insn_code icode, int opnum, rtx opval) +{ + if (GET_CODE (opval) != CONST_INT) + { + error ("%qs expects a constant argument", insn_data[icode].name); + return false; + } + + if (!(*insn_data[icode].operand[opnum].predicate) (opval, VOIDmode)) + { + error ("constant argument out of range for %qs", insn_data[icode].name); + return false; + } + return true; +} + +/* Add a SPARC builtin function with NAME, ICODE, CODE and TYPE. Return the + function decl or NULL_TREE if the builtin was not added. */ + +static tree +def_builtin (const char *name, enum insn_code icode, enum sparc_builtins code, + tree type) +{ + tree t + = add_builtin_function (name, type, code, BUILT_IN_MD, NULL, NULL_TREE); + + if (t) + { + sparc_builtins[code] = t; + sparc_builtins_icode[code] = icode; + } + + return t; +} + +/* Likewise, but also marks the function as "const". */ + +static tree +def_builtin_const (const char *name, enum insn_code icode, + enum sparc_builtins code, tree type) +{ + tree t = def_builtin (name, icode, code, type); + + if (t) + TREE_READONLY (t) = 1; + + return t; +} + +/* Implement the TARGET_INIT_BUILTINS target hook. + Create builtin functions for special SPARC instructions. */ + +static void +sparc_init_builtins (void) +{ + if (TARGET_FPU) + sparc_fpu_init_builtins (); + + if (TARGET_VIS) + sparc_vis_init_builtins (); +} + +/* Create builtin functions for FPU instructions. */ + +static void +sparc_fpu_init_builtins (void) +{ + tree ftype + = build_function_type_list (void_type_node, + build_pointer_type (unsigned_type_node), 0); + def_builtin ("__builtin_load_fsr", CODE_FOR_ldfsr, + SPARC_BUILTIN_LDFSR, ftype); + def_builtin ("__builtin_store_fsr", CODE_FOR_stfsr, + SPARC_BUILTIN_STFSR, ftype); +} + +/* Create builtin functions for VIS instructions. */ + +static void +sparc_vis_init_builtins (void) +{ + tree v4qi = build_vector_type (unsigned_intQI_type_node, 4); + tree v8qi = build_vector_type (unsigned_intQI_type_node, 8); + tree v4hi = build_vector_type (intHI_type_node, 4); + tree v2hi = build_vector_type (intHI_type_node, 2); + tree v2si = build_vector_type (intSI_type_node, 2); + tree v1si = build_vector_type (intSI_type_node, 1); + + tree v4qi_ftype_v4hi = build_function_type_list (v4qi, v4hi, 0); + tree v8qi_ftype_v2si_v8qi = build_function_type_list (v8qi, v2si, v8qi, 0); + tree v2hi_ftype_v2si = build_function_type_list (v2hi, v2si, 0); + tree v4hi_ftype_v4qi = build_function_type_list (v4hi, v4qi, 0); + tree v8qi_ftype_v4qi_v4qi = build_function_type_list (v8qi, v4qi, v4qi, 0); + tree v4hi_ftype_v4qi_v4hi = build_function_type_list (v4hi, v4qi, v4hi, 0); + tree v4hi_ftype_v4qi_v2hi = build_function_type_list (v4hi, v4qi, v2hi, 0); + tree v2si_ftype_v4qi_v2hi = build_function_type_list (v2si, v4qi, v2hi, 0); + tree v4hi_ftype_v8qi_v4hi = build_function_type_list (v4hi, v8qi, v4hi, 0); + tree v4hi_ftype_v4hi_v4hi = build_function_type_list (v4hi, v4hi, v4hi, 0); + tree v2si_ftype_v2si_v2si = build_function_type_list (v2si, v2si, v2si, 0); + tree v8qi_ftype_v8qi_v8qi = build_function_type_list (v8qi, v8qi, v8qi, 0); + tree v2hi_ftype_v2hi_v2hi = build_function_type_list (v2hi, v2hi, v2hi, 0); + tree v1si_ftype_v1si_v1si = build_function_type_list (v1si, v1si, v1si, 0); + tree di_ftype_v8qi_v8qi_di = build_function_type_list (intDI_type_node, + v8qi, v8qi, + intDI_type_node, 0); + tree di_ftype_v8qi_v8qi = build_function_type_list (intDI_type_node, + v8qi, v8qi, 0); + tree si_ftype_v8qi_v8qi = build_function_type_list (intSI_type_node, + v8qi, v8qi, 0); + tree v8qi_ftype_df_si = build_function_type_list (v8qi, double_type_node, + intSI_type_node, 0); + tree v4hi_ftype_df_si = build_function_type_list (v4hi, double_type_node, + intSI_type_node, 0); + tree v2si_ftype_df_si = build_function_type_list (v2si, double_type_node, + intDI_type_node, 0); + tree di_ftype_di_di = build_function_type_list (intDI_type_node, + intDI_type_node, + intDI_type_node, 0); + tree si_ftype_si_si = build_function_type_list (intSI_type_node, + intSI_type_node, + intSI_type_node, 0); + tree ptr_ftype_ptr_si = build_function_type_list (ptr_type_node, + ptr_type_node, + intSI_type_node, 0); + tree ptr_ftype_ptr_di = build_function_type_list (ptr_type_node, + ptr_type_node, + intDI_type_node, 0); + tree si_ftype_ptr_ptr = build_function_type_list (intSI_type_node, + ptr_type_node, + ptr_type_node, 0); + tree di_ftype_ptr_ptr = build_function_type_list (intDI_type_node, + ptr_type_node, + ptr_type_node, 0); + tree si_ftype_v4hi_v4hi = build_function_type_list (intSI_type_node, + v4hi, v4hi, 0); + tree si_ftype_v2si_v2si = build_function_type_list (intSI_type_node, + v2si, v2si, 0); + tree di_ftype_v4hi_v4hi = build_function_type_list (intDI_type_node, + v4hi, v4hi, 0); + tree di_ftype_v2si_v2si = build_function_type_list (intDI_type_node, + v2si, v2si, 0); + tree void_ftype_di = build_function_type_list (void_type_node, + intDI_type_node, 0); + tree di_ftype_void = build_function_type_list (intDI_type_node, + void_type_node, 0); + tree void_ftype_si = build_function_type_list (void_type_node, + intSI_type_node, 0); + tree sf_ftype_sf_sf = build_function_type_list (float_type_node, + float_type_node, + float_type_node, 0); + tree df_ftype_df_df = build_function_type_list (double_type_node, + double_type_node, + double_type_node, 0); + + /* Packing and expanding vectors. */ + def_builtin ("__builtin_vis_fpack16", CODE_FOR_fpack16_vis, + SPARC_BUILTIN_FPACK16, v4qi_ftype_v4hi); + def_builtin ("__builtin_vis_fpack32", CODE_FOR_fpack32_vis, + SPARC_BUILTIN_FPACK32, v8qi_ftype_v2si_v8qi); + def_builtin ("__builtin_vis_fpackfix", CODE_FOR_fpackfix_vis, + SPARC_BUILTIN_FPACKFIX, v2hi_ftype_v2si); + def_builtin_const ("__builtin_vis_fexpand", CODE_FOR_fexpand_vis, + SPARC_BUILTIN_FEXPAND, v4hi_ftype_v4qi); + def_builtin_const ("__builtin_vis_fpmerge", CODE_FOR_fpmerge_vis, + SPARC_BUILTIN_FPMERGE, v8qi_ftype_v4qi_v4qi); + + /* Multiplications. */ + def_builtin_const ("__builtin_vis_fmul8x16", CODE_FOR_fmul8x16_vis, + SPARC_BUILTIN_FMUL8X16, v4hi_ftype_v4qi_v4hi); + def_builtin_const ("__builtin_vis_fmul8x16au", CODE_FOR_fmul8x16au_vis, + SPARC_BUILTIN_FMUL8X16AU, v4hi_ftype_v4qi_v2hi); + def_builtin_const ("__builtin_vis_fmul8x16al", CODE_FOR_fmul8x16al_vis, + SPARC_BUILTIN_FMUL8X16AL, v4hi_ftype_v4qi_v2hi); + def_builtin_const ("__builtin_vis_fmul8sux16", CODE_FOR_fmul8sux16_vis, + SPARC_BUILTIN_FMUL8SUX16, v4hi_ftype_v8qi_v4hi); + def_builtin_const ("__builtin_vis_fmul8ulx16", CODE_FOR_fmul8ulx16_vis, + SPARC_BUILTIN_FMUL8ULX16, v4hi_ftype_v8qi_v4hi); + def_builtin_const ("__builtin_vis_fmuld8sux16", CODE_FOR_fmuld8sux16_vis, + SPARC_BUILTIN_FMULD8SUX16, v2si_ftype_v4qi_v2hi); + def_builtin_const ("__builtin_vis_fmuld8ulx16", CODE_FOR_fmuld8ulx16_vis, + SPARC_BUILTIN_FMULD8ULX16, v2si_ftype_v4qi_v2hi); + + /* Data aligning. */ + def_builtin ("__builtin_vis_faligndatav4hi", CODE_FOR_faligndatav4hi_vis, + SPARC_BUILTIN_FALIGNDATAV4HI, v4hi_ftype_v4hi_v4hi); + def_builtin ("__builtin_vis_faligndatav8qi", CODE_FOR_faligndatav8qi_vis, + SPARC_BUILTIN_FALIGNDATAV8QI, v8qi_ftype_v8qi_v8qi); + def_builtin ("__builtin_vis_faligndatav2si", CODE_FOR_faligndatav2si_vis, + SPARC_BUILTIN_FALIGNDATAV2SI, v2si_ftype_v2si_v2si); + def_builtin ("__builtin_vis_faligndatadi", CODE_FOR_faligndatav1di_vis, + SPARC_BUILTIN_FALIGNDATADI, di_ftype_di_di); + + def_builtin ("__builtin_vis_write_gsr", CODE_FOR_wrgsr_vis, + SPARC_BUILTIN_WRGSR, void_ftype_di); + def_builtin ("__builtin_vis_read_gsr", CODE_FOR_rdgsr_vis, + SPARC_BUILTIN_RDGSR, di_ftype_void); + + if (TARGET_ARCH64) + { + def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrdi_vis, + SPARC_BUILTIN_ALIGNADDR, ptr_ftype_ptr_di); + def_builtin ("__builtin_vis_alignaddrl", CODE_FOR_alignaddrldi_vis, + SPARC_BUILTIN_ALIGNADDRL, ptr_ftype_ptr_di); + } + else + { + def_builtin ("__builtin_vis_alignaddr", CODE_FOR_alignaddrsi_vis, + SPARC_BUILTIN_ALIGNADDR, ptr_ftype_ptr_si); + def_builtin ("__builtin_vis_alignaddrl", CODE_FOR_alignaddrlsi_vis, + SPARC_BUILTIN_ALIGNADDRL, ptr_ftype_ptr_si); + } + + /* Pixel distance. */ + def_builtin_const ("__builtin_vis_pdist", CODE_FOR_pdist_vis, + SPARC_BUILTIN_PDIST, di_ftype_v8qi_v8qi_di); + + /* Edge handling. */ + if (TARGET_ARCH64) + { + def_builtin_const ("__builtin_vis_edge8", CODE_FOR_edge8di_vis, + SPARC_BUILTIN_EDGE8, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge8l", CODE_FOR_edge8ldi_vis, + SPARC_BUILTIN_EDGE8L, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge16", CODE_FOR_edge16di_vis, + SPARC_BUILTIN_EDGE16, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge16l", CODE_FOR_edge16ldi_vis, + SPARC_BUILTIN_EDGE16L, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge32", CODE_FOR_edge32di_vis, + SPARC_BUILTIN_EDGE32, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge32l", CODE_FOR_edge32ldi_vis, + SPARC_BUILTIN_EDGE32L, di_ftype_ptr_ptr); + } + else + { + def_builtin_const ("__builtin_vis_edge8", CODE_FOR_edge8si_vis, + SPARC_BUILTIN_EDGE8, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge8l", CODE_FOR_edge8lsi_vis, + SPARC_BUILTIN_EDGE8L, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge16", CODE_FOR_edge16si_vis, + SPARC_BUILTIN_EDGE16, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge16l", CODE_FOR_edge16lsi_vis, + SPARC_BUILTIN_EDGE16L, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge32", CODE_FOR_edge32si_vis, + SPARC_BUILTIN_EDGE32, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge32l", CODE_FOR_edge32lsi_vis, + SPARC_BUILTIN_EDGE32L, si_ftype_ptr_ptr); + } + + /* Pixel compare. */ + if (TARGET_ARCH64) + { + def_builtin_const ("__builtin_vis_fcmple16", CODE_FOR_fcmple16di_vis, + SPARC_BUILTIN_FCMPLE16, di_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fcmple32", CODE_FOR_fcmple32di_vis, + SPARC_BUILTIN_FCMPLE32, di_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fcmpne16", CODE_FOR_fcmpne16di_vis, + SPARC_BUILTIN_FCMPNE16, di_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fcmpne32", CODE_FOR_fcmpne32di_vis, + SPARC_BUILTIN_FCMPNE32, di_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fcmpgt16", CODE_FOR_fcmpgt16di_vis, + SPARC_BUILTIN_FCMPGT16, di_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fcmpgt32", CODE_FOR_fcmpgt32di_vis, + SPARC_BUILTIN_FCMPGT32, di_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fcmpeq16", CODE_FOR_fcmpeq16di_vis, + SPARC_BUILTIN_FCMPEQ16, di_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fcmpeq32", CODE_FOR_fcmpeq32di_vis, + SPARC_BUILTIN_FCMPEQ32, di_ftype_v2si_v2si); + } + else + { + def_builtin_const ("__builtin_vis_fcmple16", CODE_FOR_fcmple16si_vis, + SPARC_BUILTIN_FCMPLE16, si_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fcmple32", CODE_FOR_fcmple32si_vis, + SPARC_BUILTIN_FCMPLE32, si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fcmpne16", CODE_FOR_fcmpne16si_vis, + SPARC_BUILTIN_FCMPNE16, si_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fcmpne32", CODE_FOR_fcmpne32si_vis, + SPARC_BUILTIN_FCMPNE32, si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fcmpgt16", CODE_FOR_fcmpgt16si_vis, + SPARC_BUILTIN_FCMPGT16, si_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fcmpgt32", CODE_FOR_fcmpgt32si_vis, + SPARC_BUILTIN_FCMPGT32, si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fcmpeq16", CODE_FOR_fcmpeq16si_vis, + SPARC_BUILTIN_FCMPEQ16, si_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fcmpeq32", CODE_FOR_fcmpeq32si_vis, + SPARC_BUILTIN_FCMPEQ32, si_ftype_v2si_v2si); + } + + /* Addition and subtraction. */ + def_builtin_const ("__builtin_vis_fpadd16", CODE_FOR_addv4hi3, + SPARC_BUILTIN_FPADD16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpadd16s", CODE_FOR_addv2hi3, + SPARC_BUILTIN_FPADD16S, v2hi_ftype_v2hi_v2hi); + def_builtin_const ("__builtin_vis_fpadd32", CODE_FOR_addv2si3, + SPARC_BUILTIN_FPADD32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpadd32s", CODE_FOR_addv1si3, + SPARC_BUILTIN_FPADD32S, v1si_ftype_v1si_v1si); + def_builtin_const ("__builtin_vis_fpsub16", CODE_FOR_subv4hi3, + SPARC_BUILTIN_FPSUB16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpsub16s", CODE_FOR_subv2hi3, + SPARC_BUILTIN_FPSUB16S, v2hi_ftype_v2hi_v2hi); + def_builtin_const ("__builtin_vis_fpsub32", CODE_FOR_subv2si3, + SPARC_BUILTIN_FPSUB32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpsub32s", CODE_FOR_subv1si3, + SPARC_BUILTIN_FPSUB32S, v1si_ftype_v1si_v1si); + + /* Three-dimensional array addressing. */ + if (TARGET_ARCH64) + { + def_builtin_const ("__builtin_vis_array8", CODE_FOR_array8di_vis, + SPARC_BUILTIN_ARRAY8, di_ftype_di_di); + def_builtin_const ("__builtin_vis_array16", CODE_FOR_array16di_vis, + SPARC_BUILTIN_ARRAY16, di_ftype_di_di); + def_builtin_const ("__builtin_vis_array32", CODE_FOR_array32di_vis, + SPARC_BUILTIN_ARRAY32, di_ftype_di_di); + } + else + { + def_builtin_const ("__builtin_vis_array8", CODE_FOR_array8si_vis, + SPARC_BUILTIN_ARRAY8, si_ftype_si_si); + def_builtin_const ("__builtin_vis_array16", CODE_FOR_array16si_vis, + SPARC_BUILTIN_ARRAY16, si_ftype_si_si); + def_builtin_const ("__builtin_vis_array32", CODE_FOR_array32si_vis, + SPARC_BUILTIN_ARRAY32, si_ftype_si_si); + } + + if (TARGET_VIS2) + { + /* Edge handling. */ + if (TARGET_ARCH64) + { + def_builtin_const ("__builtin_vis_edge8n", CODE_FOR_edge8ndi_vis, + SPARC_BUILTIN_EDGE8N, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge8ln", CODE_FOR_edge8lndi_vis, + SPARC_BUILTIN_EDGE8LN, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge16n", CODE_FOR_edge16ndi_vis, + SPARC_BUILTIN_EDGE16N, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge16ln", CODE_FOR_edge16lndi_vis, + SPARC_BUILTIN_EDGE16LN, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge32n", CODE_FOR_edge32ndi_vis, + SPARC_BUILTIN_EDGE32N, di_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge32ln", CODE_FOR_edge32lndi_vis, + SPARC_BUILTIN_EDGE32LN, di_ftype_ptr_ptr); + } + else + { + def_builtin_const ("__builtin_vis_edge8n", CODE_FOR_edge8nsi_vis, + SPARC_BUILTIN_EDGE8N, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge8ln", CODE_FOR_edge8lnsi_vis, + SPARC_BUILTIN_EDGE8LN, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge16n", CODE_FOR_edge16nsi_vis, + SPARC_BUILTIN_EDGE16N, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge16ln", CODE_FOR_edge16lnsi_vis, + SPARC_BUILTIN_EDGE16LN, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge32n", CODE_FOR_edge32nsi_vis, + SPARC_BUILTIN_EDGE32N, si_ftype_ptr_ptr); + def_builtin_const ("__builtin_vis_edge32ln", CODE_FOR_edge32lnsi_vis, + SPARC_BUILTIN_EDGE32LN, si_ftype_ptr_ptr); + } + + /* Byte mask and shuffle. */ + if (TARGET_ARCH64) + def_builtin ("__builtin_vis_bmask", CODE_FOR_bmaskdi_vis, + SPARC_BUILTIN_BMASK, di_ftype_di_di); + else + def_builtin ("__builtin_vis_bmask", CODE_FOR_bmasksi_vis, + SPARC_BUILTIN_BMASK, si_ftype_si_si); + def_builtin ("__builtin_vis_bshufflev4hi", CODE_FOR_bshufflev4hi_vis, + SPARC_BUILTIN_BSHUFFLEV4HI, v4hi_ftype_v4hi_v4hi); + def_builtin ("__builtin_vis_bshufflev8qi", CODE_FOR_bshufflev8qi_vis, + SPARC_BUILTIN_BSHUFFLEV8QI, v8qi_ftype_v8qi_v8qi); + def_builtin ("__builtin_vis_bshufflev2si", CODE_FOR_bshufflev2si_vis, + SPARC_BUILTIN_BSHUFFLEV2SI, v2si_ftype_v2si_v2si); + def_builtin ("__builtin_vis_bshuffledi", CODE_FOR_bshufflev1di_vis, + SPARC_BUILTIN_BSHUFFLEDI, di_ftype_di_di); + } + + if (TARGET_VIS3) + { + if (TARGET_ARCH64) + { + def_builtin ("__builtin_vis_cmask8", CODE_FOR_cmask8di_vis, + SPARC_BUILTIN_CMASK8, void_ftype_di); + def_builtin ("__builtin_vis_cmask16", CODE_FOR_cmask16di_vis, + SPARC_BUILTIN_CMASK16, void_ftype_di); + def_builtin ("__builtin_vis_cmask32", CODE_FOR_cmask32di_vis, + SPARC_BUILTIN_CMASK32, void_ftype_di); + } + else + { + def_builtin ("__builtin_vis_cmask8", CODE_FOR_cmask8si_vis, + SPARC_BUILTIN_CMASK8, void_ftype_si); + def_builtin ("__builtin_vis_cmask16", CODE_FOR_cmask16si_vis, + SPARC_BUILTIN_CMASK16, void_ftype_si); + def_builtin ("__builtin_vis_cmask32", CODE_FOR_cmask32si_vis, + SPARC_BUILTIN_CMASK32, void_ftype_si); + } + + def_builtin_const ("__builtin_vis_fchksm16", CODE_FOR_fchksm16_vis, + SPARC_BUILTIN_FCHKSM16, v4hi_ftype_v4hi_v4hi); + + def_builtin_const ("__builtin_vis_fsll16", CODE_FOR_vashlv4hi3, + SPARC_BUILTIN_FSLL16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fslas16", CODE_FOR_vssashlv4hi3, + SPARC_BUILTIN_FSLAS16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fsrl16", CODE_FOR_vlshrv4hi3, + SPARC_BUILTIN_FSRL16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fsra16", CODE_FOR_vashrv4hi3, + SPARC_BUILTIN_FSRA16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fsll32", CODE_FOR_vashlv2si3, + SPARC_BUILTIN_FSLL32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fslas32", CODE_FOR_vssashlv2si3, + SPARC_BUILTIN_FSLAS32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fsrl32", CODE_FOR_vlshrv2si3, + SPARC_BUILTIN_FSRL32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fsra32", CODE_FOR_vashrv2si3, + SPARC_BUILTIN_FSRA32, v2si_ftype_v2si_v2si); + + if (TARGET_ARCH64) + def_builtin_const ("__builtin_vis_pdistn", CODE_FOR_pdistndi_vis, + SPARC_BUILTIN_PDISTN, di_ftype_v8qi_v8qi); + else + def_builtin_const ("__builtin_vis_pdistn", CODE_FOR_pdistnsi_vis, + SPARC_BUILTIN_PDISTN, si_ftype_v8qi_v8qi); + + def_builtin_const ("__builtin_vis_fmean16", CODE_FOR_fmean16_vis, + SPARC_BUILTIN_FMEAN16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpadd64", CODE_FOR_fpadd64_vis, + SPARC_BUILTIN_FPADD64, di_ftype_di_di); + def_builtin_const ("__builtin_vis_fpsub64", CODE_FOR_fpsub64_vis, + SPARC_BUILTIN_FPSUB64, di_ftype_di_di); + + def_builtin_const ("__builtin_vis_fpadds16", CODE_FOR_ssaddv4hi3, + SPARC_BUILTIN_FPADDS16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpadds16s", CODE_FOR_ssaddv2hi3, + SPARC_BUILTIN_FPADDS16S, v2hi_ftype_v2hi_v2hi); + def_builtin_const ("__builtin_vis_fpsubs16", CODE_FOR_sssubv4hi3, + SPARC_BUILTIN_FPSUBS16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpsubs16s", CODE_FOR_sssubv2hi3, + SPARC_BUILTIN_FPSUBS16S, v2hi_ftype_v2hi_v2hi); + def_builtin_const ("__builtin_vis_fpadds32", CODE_FOR_ssaddv2si3, + SPARC_BUILTIN_FPADDS32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpadds32s", CODE_FOR_ssaddv1si3, + SPARC_BUILTIN_FPADDS32S, v1si_ftype_v1si_v1si); + def_builtin_const ("__builtin_vis_fpsubs32", CODE_FOR_sssubv2si3, + SPARC_BUILTIN_FPSUBS32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpsubs32s", CODE_FOR_sssubv1si3, + SPARC_BUILTIN_FPSUBS32S, v1si_ftype_v1si_v1si); + + if (TARGET_ARCH64) + { + def_builtin_const ("__builtin_vis_fucmple8", CODE_FOR_fucmple8di_vis, + SPARC_BUILTIN_FUCMPLE8, di_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fucmpne8", CODE_FOR_fucmpne8di_vis, + SPARC_BUILTIN_FUCMPNE8, di_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fucmpgt8", CODE_FOR_fucmpgt8di_vis, + SPARC_BUILTIN_FUCMPGT8, di_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fucmpeq8", CODE_FOR_fucmpeq8di_vis, + SPARC_BUILTIN_FUCMPEQ8, di_ftype_v8qi_v8qi); + } + else + { + def_builtin_const ("__builtin_vis_fucmple8", CODE_FOR_fucmple8si_vis, + SPARC_BUILTIN_FUCMPLE8, si_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fucmpne8", CODE_FOR_fucmpne8si_vis, + SPARC_BUILTIN_FUCMPNE8, si_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fucmpgt8", CODE_FOR_fucmpgt8si_vis, + SPARC_BUILTIN_FUCMPGT8, si_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fucmpeq8", CODE_FOR_fucmpeq8si_vis, + SPARC_BUILTIN_FUCMPEQ8, si_ftype_v8qi_v8qi); + } + + def_builtin_const ("__builtin_vis_fhadds", CODE_FOR_fhaddsf_vis, + SPARC_BUILTIN_FHADDS, sf_ftype_sf_sf); + def_builtin_const ("__builtin_vis_fhaddd", CODE_FOR_fhadddf_vis, + SPARC_BUILTIN_FHADDD, df_ftype_df_df); + def_builtin_const ("__builtin_vis_fhsubs", CODE_FOR_fhsubsf_vis, + SPARC_BUILTIN_FHSUBS, sf_ftype_sf_sf); + def_builtin_const ("__builtin_vis_fhsubd", CODE_FOR_fhsubdf_vis, + SPARC_BUILTIN_FHSUBD, df_ftype_df_df); + def_builtin_const ("__builtin_vis_fnhadds", CODE_FOR_fnhaddsf_vis, + SPARC_BUILTIN_FNHADDS, sf_ftype_sf_sf); + def_builtin_const ("__builtin_vis_fnhaddd", CODE_FOR_fnhadddf_vis, + SPARC_BUILTIN_FNHADDD, df_ftype_df_df); + + def_builtin_const ("__builtin_vis_umulxhi", CODE_FOR_umulxhi_vis, + SPARC_BUILTIN_UMULXHI, di_ftype_di_di); + def_builtin_const ("__builtin_vis_xmulx", CODE_FOR_xmulx_vis, + SPARC_BUILTIN_XMULX, di_ftype_di_di); + def_builtin_const ("__builtin_vis_xmulxhi", CODE_FOR_xmulxhi_vis, + SPARC_BUILTIN_XMULXHI, di_ftype_di_di); + } + + if (TARGET_VIS4) + { + def_builtin_const ("__builtin_vis_fpadd8", CODE_FOR_addv8qi3, + SPARC_BUILTIN_FPADD8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpadds8", CODE_FOR_ssaddv8qi3, + SPARC_BUILTIN_FPADDS8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpaddus8", CODE_FOR_usaddv8qi3, + SPARC_BUILTIN_FPADDUS8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpaddus16", CODE_FOR_usaddv4hi3, + SPARC_BUILTIN_FPADDUS16, v4hi_ftype_v4hi_v4hi); + + + if (TARGET_ARCH64) + { + def_builtin_const ("__builtin_vis_fpcmple8", CODE_FOR_fpcmple8di_vis, + SPARC_BUILTIN_FPCMPLE8, di_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpcmpgt8", CODE_FOR_fpcmpgt8di_vis, + SPARC_BUILTIN_FPCMPGT8, di_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpcmpule16", CODE_FOR_fpcmpule16di_vis, + SPARC_BUILTIN_FPCMPULE16, di_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpcmpugt16", CODE_FOR_fpcmpugt16di_vis, + SPARC_BUILTIN_FPCMPUGT16, di_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpcmpule32", CODE_FOR_fpcmpule32di_vis, + SPARC_BUILTIN_FPCMPULE32, di_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpcmpugt32", CODE_FOR_fpcmpugt32di_vis, + SPARC_BUILTIN_FPCMPUGT32, di_ftype_v2si_v2si); + } + else + { + def_builtin_const ("__builtin_vis_fpcmple8", CODE_FOR_fpcmple8si_vis, + SPARC_BUILTIN_FPCMPLE8, si_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpcmpgt8", CODE_FOR_fpcmpgt8si_vis, + SPARC_BUILTIN_FPCMPGT8, si_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpcmpule16", CODE_FOR_fpcmpule16si_vis, + SPARC_BUILTIN_FPCMPULE16, si_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpcmpugt16", CODE_FOR_fpcmpugt16si_vis, + SPARC_BUILTIN_FPCMPUGT16, si_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpcmpule32", CODE_FOR_fpcmpule32si_vis, + SPARC_BUILTIN_FPCMPULE32, di_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpcmpugt32", CODE_FOR_fpcmpugt32si_vis, + SPARC_BUILTIN_FPCMPUGT32, di_ftype_v2si_v2si); + } + + def_builtin_const ("__builtin_vis_fpmax8", CODE_FOR_maxv8qi3, + SPARC_BUILTIN_FPMAX8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpmax16", CODE_FOR_maxv4hi3, + SPARC_BUILTIN_FPMAX16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpmax32", CODE_FOR_maxv2si3, + SPARC_BUILTIN_FPMAX32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpmaxu8", CODE_FOR_maxuv8qi3, + SPARC_BUILTIN_FPMAXU8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpmaxu16", CODE_FOR_maxuv4hi3, + SPARC_BUILTIN_FPMAXU16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpmaxu32", CODE_FOR_maxuv2si3, + SPARC_BUILTIN_FPMAXU32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpmin8", CODE_FOR_minv8qi3, + SPARC_BUILTIN_FPMIN8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpmin16", CODE_FOR_minv4hi3, + SPARC_BUILTIN_FPMIN16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpmin32", CODE_FOR_minv2si3, + SPARC_BUILTIN_FPMIN32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpminu8", CODE_FOR_minuv8qi3, + SPARC_BUILTIN_FPMINU8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpminu16", CODE_FOR_minuv4hi3, + SPARC_BUILTIN_FPMINU16, v4hi_ftype_v4hi_v4hi); + def_builtin_const ("__builtin_vis_fpminu32", CODE_FOR_minuv2si3, + SPARC_BUILTIN_FPMINU32, v2si_ftype_v2si_v2si); + def_builtin_const ("__builtin_vis_fpsub8", CODE_FOR_subv8qi3, + SPARC_BUILTIN_FPSUB8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpsubs8", CODE_FOR_sssubv8qi3, + SPARC_BUILTIN_FPSUBS8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpsubus8", CODE_FOR_ussubv8qi3, + SPARC_BUILTIN_FPSUBUS8, v8qi_ftype_v8qi_v8qi); + def_builtin_const ("__builtin_vis_fpsubus16", CODE_FOR_ussubv4hi3, + SPARC_BUILTIN_FPSUBUS16, v4hi_ftype_v4hi_v4hi); + } + + if (TARGET_VIS4B) + { + def_builtin_const ("__builtin_vis_dictunpack8", CODE_FOR_dictunpack8, + SPARC_BUILTIN_DICTUNPACK8, v8qi_ftype_df_si); + def_builtin_const ("__builtin_vis_dictunpack16", CODE_FOR_dictunpack16, + SPARC_BUILTIN_DICTUNPACK16, v4hi_ftype_df_si); + def_builtin_const ("__builtin_vis_dictunpack32", CODE_FOR_dictunpack32, + SPARC_BUILTIN_DICTUNPACK32, v2si_ftype_df_si); + + if (TARGET_ARCH64) + { + tree di_ftype_v8qi_v8qi_si = build_function_type_list (intDI_type_node, + v8qi, v8qi, + intSI_type_node, 0); + tree di_ftype_v4hi_v4hi_si = build_function_type_list (intDI_type_node, + v4hi, v4hi, + intSI_type_node, 0); + tree di_ftype_v2si_v2si_si = build_function_type_list (intDI_type_node, + v2si, v2si, + intSI_type_node, 0); + + def_builtin_const ("__builtin_vis_fpcmple8shl", CODE_FOR_fpcmple8dishl, + SPARC_BUILTIN_FPCMPLE8SHL, di_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpgt8shl", CODE_FOR_fpcmpgt8dishl, + SPARC_BUILTIN_FPCMPGT8SHL, di_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpeq8shl", CODE_FOR_fpcmpeq8dishl, + SPARC_BUILTIN_FPCMPEQ8SHL, di_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpne8shl", CODE_FOR_fpcmpne8dishl, + SPARC_BUILTIN_FPCMPNE8SHL, di_ftype_v8qi_v8qi_si); + + def_builtin_const ("__builtin_vis_fpcmple16shl", CODE_FOR_fpcmple16dishl, + SPARC_BUILTIN_FPCMPLE16SHL, di_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpgt16shl", CODE_FOR_fpcmpgt16dishl, + SPARC_BUILTIN_FPCMPGT16SHL, di_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpeq16shl", CODE_FOR_fpcmpeq16dishl, + SPARC_BUILTIN_FPCMPEQ16SHL, di_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpne16shl", CODE_FOR_fpcmpne16dishl, + SPARC_BUILTIN_FPCMPNE16SHL, di_ftype_v4hi_v4hi_si); + + def_builtin_const ("__builtin_vis_fpcmple32shl", CODE_FOR_fpcmple32dishl, + SPARC_BUILTIN_FPCMPLE32SHL, di_ftype_v2si_v2si_si); + def_builtin_const ("__builtin_vis_fpcmpgt32shl", CODE_FOR_fpcmpgt32dishl, + SPARC_BUILTIN_FPCMPGT32SHL, di_ftype_v2si_v2si_si); + def_builtin_const ("__builtin_vis_fpcmpeq32shl", CODE_FOR_fpcmpeq32dishl, + SPARC_BUILTIN_FPCMPEQ32SHL, di_ftype_v2si_v2si_si); + def_builtin_const ("__builtin_vis_fpcmpne32shl", CODE_FOR_fpcmpne32dishl, + SPARC_BUILTIN_FPCMPNE32SHL, di_ftype_v2si_v2si_si); + + + def_builtin_const ("__builtin_vis_fpcmpule8shl", CODE_FOR_fpcmpule8dishl, + SPARC_BUILTIN_FPCMPULE8SHL, di_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpugt8shl", CODE_FOR_fpcmpugt8dishl, + SPARC_BUILTIN_FPCMPUGT8SHL, di_ftype_v8qi_v8qi_si); + + def_builtin_const ("__builtin_vis_fpcmpule16shl", CODE_FOR_fpcmpule16dishl, + SPARC_BUILTIN_FPCMPULE16SHL, di_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpugt16shl", CODE_FOR_fpcmpugt16dishl, + SPARC_BUILTIN_FPCMPUGT16SHL, di_ftype_v4hi_v4hi_si); + + def_builtin_const ("__builtin_vis_fpcmpule32shl", CODE_FOR_fpcmpule32dishl, + SPARC_BUILTIN_FPCMPULE32SHL, di_ftype_v2si_v2si_si); + def_builtin_const ("__builtin_vis_fpcmpugt32shl", CODE_FOR_fpcmpugt32dishl, + SPARC_BUILTIN_FPCMPUGT32SHL, di_ftype_v2si_v2si_si); + + def_builtin_const ("__builtin_vis_fpcmpde8shl", CODE_FOR_fpcmpde8dishl, + SPARC_BUILTIN_FPCMPDE8SHL, di_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpde16shl", CODE_FOR_fpcmpde16dishl, + SPARC_BUILTIN_FPCMPDE16SHL, di_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpde32shl", CODE_FOR_fpcmpde32dishl, + SPARC_BUILTIN_FPCMPDE32SHL, di_ftype_v2si_v2si_si); + + def_builtin_const ("__builtin_vis_fpcmpur8shl", CODE_FOR_fpcmpur8dishl, + SPARC_BUILTIN_FPCMPUR8SHL, di_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpur16shl", CODE_FOR_fpcmpur16dishl, + SPARC_BUILTIN_FPCMPUR16SHL, di_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpur32shl", CODE_FOR_fpcmpur32dishl, + SPARC_BUILTIN_FPCMPUR32SHL, di_ftype_v2si_v2si_si); + + } + else + { + tree si_ftype_v8qi_v8qi_si = build_function_type_list (intSI_type_node, + v8qi, v8qi, + intSI_type_node, 0); + tree si_ftype_v4hi_v4hi_si = build_function_type_list (intSI_type_node, + v4hi, v4hi, + intSI_type_node, 0); + tree si_ftype_v2si_v2si_si = build_function_type_list (intSI_type_node, + v2si, v2si, + intSI_type_node, 0); + + def_builtin_const ("__builtin_vis_fpcmple8shl", CODE_FOR_fpcmple8sishl, + SPARC_BUILTIN_FPCMPLE8SHL, si_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpgt8shl", CODE_FOR_fpcmpgt8sishl, + SPARC_BUILTIN_FPCMPGT8SHL, si_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpeq8shl", CODE_FOR_fpcmpeq8sishl, + SPARC_BUILTIN_FPCMPEQ8SHL, si_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpne8shl", CODE_FOR_fpcmpne8sishl, + SPARC_BUILTIN_FPCMPNE8SHL, si_ftype_v8qi_v8qi_si); + + def_builtin_const ("__builtin_vis_fpcmple16shl", CODE_FOR_fpcmple16sishl, + SPARC_BUILTIN_FPCMPLE16SHL, si_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpgt16shl", CODE_FOR_fpcmpgt16sishl, + SPARC_BUILTIN_FPCMPGT16SHL, si_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpeq16shl", CODE_FOR_fpcmpeq16sishl, + SPARC_BUILTIN_FPCMPEQ16SHL, si_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpne16shl", CODE_FOR_fpcmpne16sishl, + SPARC_BUILTIN_FPCMPNE16SHL, si_ftype_v4hi_v4hi_si); + + def_builtin_const ("__builtin_vis_fpcmple32shl", CODE_FOR_fpcmple32sishl, + SPARC_BUILTIN_FPCMPLE32SHL, si_ftype_v2si_v2si_si); + def_builtin_const ("__builtin_vis_fpcmpgt32shl", CODE_FOR_fpcmpgt32sishl, + SPARC_BUILTIN_FPCMPGT32SHL, si_ftype_v2si_v2si_si); + def_builtin_const ("__builtin_vis_fpcmpeq32shl", CODE_FOR_fpcmpeq32sishl, + SPARC_BUILTIN_FPCMPEQ32SHL, si_ftype_v2si_v2si_si); + def_builtin_const ("__builtin_vis_fpcmpne32shl", CODE_FOR_fpcmpne32sishl, + SPARC_BUILTIN_FPCMPNE32SHL, si_ftype_v2si_v2si_si); + + + def_builtin_const ("__builtin_vis_fpcmpule8shl", CODE_FOR_fpcmpule8sishl, + SPARC_BUILTIN_FPCMPULE8SHL, si_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpugt8shl", CODE_FOR_fpcmpugt8sishl, + SPARC_BUILTIN_FPCMPUGT8SHL, si_ftype_v8qi_v8qi_si); + + def_builtin_const ("__builtin_vis_fpcmpule16shl", CODE_FOR_fpcmpule16sishl, + SPARC_BUILTIN_FPCMPULE16SHL, si_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpugt16shl", CODE_FOR_fpcmpugt16sishl, + SPARC_BUILTIN_FPCMPUGT16SHL, si_ftype_v4hi_v4hi_si); + + def_builtin_const ("__builtin_vis_fpcmpule32shl", CODE_FOR_fpcmpule32sishl, + SPARC_BUILTIN_FPCMPULE32SHL, si_ftype_v2si_v2si_si); + def_builtin_const ("__builtin_vis_fpcmpugt32shl", CODE_FOR_fpcmpugt32sishl, + SPARC_BUILTIN_FPCMPUGT32SHL, si_ftype_v2si_v2si_si); + + def_builtin_const ("__builtin_vis_fpcmpde8shl", CODE_FOR_fpcmpde8sishl, + SPARC_BUILTIN_FPCMPDE8SHL, si_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpde16shl", CODE_FOR_fpcmpde16sishl, + SPARC_BUILTIN_FPCMPDE16SHL, si_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpde32shl", CODE_FOR_fpcmpde32sishl, + SPARC_BUILTIN_FPCMPDE32SHL, si_ftype_v2si_v2si_si); + + def_builtin_const ("__builtin_vis_fpcmpur8shl", CODE_FOR_fpcmpur8sishl, + SPARC_BUILTIN_FPCMPUR8SHL, si_ftype_v8qi_v8qi_si); + def_builtin_const ("__builtin_vis_fpcmpur16shl", CODE_FOR_fpcmpur16sishl, + SPARC_BUILTIN_FPCMPUR16SHL, si_ftype_v4hi_v4hi_si); + def_builtin_const ("__builtin_vis_fpcmpur32shl", CODE_FOR_fpcmpur32sishl, + SPARC_BUILTIN_FPCMPUR32SHL, si_ftype_v2si_v2si_si); + } + } +} + +/* Implement TARGET_BUILTIN_DECL hook. */ + +static tree +sparc_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) +{ + if (code >= SPARC_BUILTIN_MAX) + return error_mark_node; + + return sparc_builtins[code]; +} + +/* Implemented TARGET_EXPAND_BUILTIN hook. */ + +static rtx +sparc_expand_builtin (tree exp, rtx target, + rtx subtarget ATTRIBUTE_UNUSED, + machine_mode tmode ATTRIBUTE_UNUSED, + int ignore ATTRIBUTE_UNUSED) +{ + tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); + enum sparc_builtins code + = (enum sparc_builtins) DECL_MD_FUNCTION_CODE (fndecl); + enum insn_code icode = sparc_builtins_icode[code]; + bool nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node; + call_expr_arg_iterator iter; + int arg_count = 0; + rtx pat, op[4]; + tree arg; + + if (nonvoid) + { + machine_mode tmode = insn_data[icode].operand[0].mode; + if (!target + || GET_MODE (target) != tmode + || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) + op[0] = gen_reg_rtx (tmode); + else + op[0] = target; + } + else + op[0] = NULL_RTX; + + FOR_EACH_CALL_EXPR_ARG (arg, iter, exp) + { + const struct insn_operand_data *insn_op; + int idx; + + if (arg == error_mark_node) + return NULL_RTX; + + arg_count++; + idx = arg_count - !nonvoid; + insn_op = &insn_data[icode].operand[idx]; + op[arg_count] = expand_normal (arg); + + /* Some of the builtins require constant arguments. We check + for this here. */ + if ((code >= SPARC_BUILTIN_FIRST_FPCMPSHL + && code <= SPARC_BUILTIN_LAST_FPCMPSHL + && arg_count == 3) + || (code >= SPARC_BUILTIN_FIRST_DICTUNPACK + && code <= SPARC_BUILTIN_LAST_DICTUNPACK + && arg_count == 2)) + { + if (!check_constant_argument (icode, idx, op[arg_count])) + return const0_rtx; + } + + if (code == SPARC_BUILTIN_LDFSR || code == SPARC_BUILTIN_STFSR) + { + if (!address_operand (op[arg_count], SImode)) + { + op[arg_count] = convert_memory_address (Pmode, op[arg_count]); + op[arg_count] = copy_addr_to_reg (op[arg_count]); + } + op[arg_count] = gen_rtx_MEM (SImode, op[arg_count]); + } + + else if (insn_op->mode == V1DImode + && GET_MODE (op[arg_count]) == DImode) + op[arg_count] = gen_lowpart (V1DImode, op[arg_count]); + + else if (insn_op->mode == V1SImode + && GET_MODE (op[arg_count]) == SImode) + op[arg_count] = gen_lowpart (V1SImode, op[arg_count]); + + if (! (*insn_data[icode].operand[idx].predicate) (op[arg_count], + insn_op->mode)) + op[arg_count] = copy_to_mode_reg (insn_op->mode, op[arg_count]); + } + + switch (arg_count) + { + case 0: + pat = GEN_FCN (icode) (op[0]); + break; + case 1: + if (nonvoid) + pat = GEN_FCN (icode) (op[0], op[1]); + else + pat = GEN_FCN (icode) (op[1]); + break; + case 2: + pat = GEN_FCN (icode) (op[0], op[1], op[2]); + break; + case 3: + pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]); + break; + default: + gcc_unreachable (); + } + + if (!pat) + return NULL_RTX; + + emit_insn (pat); + + return (nonvoid ? op[0] : const0_rtx); +} + +/* Return the upper 16 bits of the 8x16 multiplication. */ + +static int +sparc_vis_mul8x16 (int e8, int e16) +{ + return (e8 * e16 + 128) / 256; +} + +/* Multiply the VECTOR_CSTs CST0 and CST1 as specified by FNCODE and put + the result into the array N_ELTS, whose elements are of INNER_TYPE. */ + +static void +sparc_handle_vis_mul8x16 (vec *n_elts, enum sparc_builtins fncode, + tree inner_type, tree cst0, tree cst1) +{ + unsigned i, num = VECTOR_CST_NELTS (cst0); + int scale; + + switch (fncode) + { + case SPARC_BUILTIN_FMUL8X16: + for (i = 0; i < num; ++i) + { + int val + = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)), + TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, i))); + n_elts->quick_push (build_int_cst (inner_type, val)); + } + break; + + case SPARC_BUILTIN_FMUL8X16AU: + scale = TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, 0)); + + for (i = 0; i < num; ++i) + { + int val + = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)), + scale); + n_elts->quick_push (build_int_cst (inner_type, val)); + } + break; + + case SPARC_BUILTIN_FMUL8X16AL: + scale = TREE_INT_CST_LOW (VECTOR_CST_ELT (cst1, 1)); + + for (i = 0; i < num; ++i) + { + int val + = sparc_vis_mul8x16 (TREE_INT_CST_LOW (VECTOR_CST_ELT (cst0, i)), + scale); + n_elts->quick_push (build_int_cst (inner_type, val)); + } + break; + + default: + gcc_unreachable (); + } +} + +/* Implement TARGET_FOLD_BUILTIN hook. + + Fold builtin functions for SPARC intrinsics. If IGNORE is true the + result of the function call is ignored. NULL_TREE is returned if the + function could not be folded. */ + +static tree +sparc_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, + tree *args, bool ignore) +{ + enum sparc_builtins code + = (enum sparc_builtins) DECL_MD_FUNCTION_CODE (fndecl); + tree rtype = TREE_TYPE (TREE_TYPE (fndecl)); + tree arg0, arg1, arg2; + + if (ignore) + switch (code) + { + case SPARC_BUILTIN_LDFSR: + case SPARC_BUILTIN_STFSR: + case SPARC_BUILTIN_ALIGNADDR: + case SPARC_BUILTIN_WRGSR: + case SPARC_BUILTIN_BMASK: + case SPARC_BUILTIN_CMASK8: + case SPARC_BUILTIN_CMASK16: + case SPARC_BUILTIN_CMASK32: + break; + + default: + return build_zero_cst (rtype); + } + + switch (code) + { + case SPARC_BUILTIN_FEXPAND: + arg0 = args[0]; + STRIP_NOPS (arg0); + + if (TREE_CODE (arg0) == VECTOR_CST) + { + tree inner_type = TREE_TYPE (rtype); + unsigned i; + + tree_vector_builder n_elts (rtype, VECTOR_CST_NELTS (arg0), 1); + for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i) + { + unsigned HOST_WIDE_INT val + = TREE_INT_CST_LOW (VECTOR_CST_ELT (arg0, i)); + n_elts.quick_push (build_int_cst (inner_type, val << 4)); + } + return n_elts.build (); + } + break; + + case SPARC_BUILTIN_FMUL8X16: + case SPARC_BUILTIN_FMUL8X16AU: + case SPARC_BUILTIN_FMUL8X16AL: + arg0 = args[0]; + arg1 = args[1]; + STRIP_NOPS (arg0); + STRIP_NOPS (arg1); + + if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST) + { + tree inner_type = TREE_TYPE (rtype); + tree_vector_builder n_elts (rtype, VECTOR_CST_NELTS (arg0), 1); + sparc_handle_vis_mul8x16 (&n_elts, code, inner_type, arg0, arg1); + return n_elts.build (); + } + break; + + case SPARC_BUILTIN_FPMERGE: + arg0 = args[0]; + arg1 = args[1]; + STRIP_NOPS (arg0); + STRIP_NOPS (arg1); + + if (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST) + { + tree_vector_builder n_elts (rtype, 2 * VECTOR_CST_NELTS (arg0), 1); + unsigned i; + for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i) + { + n_elts.quick_push (VECTOR_CST_ELT (arg0, i)); + n_elts.quick_push (VECTOR_CST_ELT (arg1, i)); + } + + return n_elts.build (); + } + break; + + case SPARC_BUILTIN_PDIST: + case SPARC_BUILTIN_PDISTN: + arg0 = args[0]; + arg1 = args[1]; + STRIP_NOPS (arg0); + STRIP_NOPS (arg1); + if (code == SPARC_BUILTIN_PDIST) + { + arg2 = args[2]; + STRIP_NOPS (arg2); + } + else + arg2 = integer_zero_node; + + if (TREE_CODE (arg0) == VECTOR_CST + && TREE_CODE (arg1) == VECTOR_CST + && TREE_CODE (arg2) == INTEGER_CST) + { + bool overflow = false; + widest_int result = wi::to_widest (arg2); + widest_int tmp; + unsigned i; + + for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i) + { + tree e0 = VECTOR_CST_ELT (arg0, i); + tree e1 = VECTOR_CST_ELT (arg1, i); + + wi::overflow_type neg1_ovf, neg2_ovf, add1_ovf, add2_ovf; + + tmp = wi::neg (wi::to_widest (e1), &neg1_ovf); + tmp = wi::add (wi::to_widest (e0), tmp, SIGNED, &add1_ovf); + if (wi::neg_p (tmp)) + tmp = wi::neg (tmp, &neg2_ovf); + else + neg2_ovf = wi::OVF_NONE; + result = wi::add (result, tmp, SIGNED, &add2_ovf); + overflow |= ((neg1_ovf != wi::OVF_NONE) + | (neg2_ovf != wi::OVF_NONE) + | (add1_ovf != wi::OVF_NONE) + | (add2_ovf != wi::OVF_NONE)); + } + + gcc_assert (!overflow); + + return wide_int_to_tree (rtype, result); + } + + default: + break; + } + + return NULL_TREE; +} + +/* ??? This duplicates information provided to the compiler by the + ??? scheduler description. Some day, teach genautomata to output + ??? the latencies and then CSE will just use that. */ + +static bool +sparc_rtx_costs (rtx x, machine_mode mode, int outer_code, + int opno ATTRIBUTE_UNUSED, + int *total, bool speed ATTRIBUTE_UNUSED) +{ + int code = GET_CODE (x); + bool float_mode_p = FLOAT_MODE_P (mode); + + switch (code) + { + case CONST_INT: + if (SMALL_INT (x)) + *total = 0; + else + *total = 2; + return true; + + case CONST_WIDE_INT: + *total = 0; + if (!SPARC_SIMM13_P (CONST_WIDE_INT_ELT (x, 0))) + *total += 2; + if (!SPARC_SIMM13_P (CONST_WIDE_INT_ELT (x, 1))) + *total += 2; + return true; + + case HIGH: + *total = 2; + return true; + + case CONST: + case LABEL_REF: + case SYMBOL_REF: + *total = 4; + return true; + + case CONST_DOUBLE: + *total = 8; + return true; + + case MEM: + /* If outer-code was a sign or zero extension, a cost + of COSTS_N_INSNS (1) was already added in. This is + why we are subtracting it back out. */ + if (outer_code == ZERO_EXTEND) + { + *total = sparc_costs->int_zload - COSTS_N_INSNS (1); + } + else if (outer_code == SIGN_EXTEND) + { + *total = sparc_costs->int_sload - COSTS_N_INSNS (1); + } + else if (float_mode_p) + { + *total = sparc_costs->float_load; + } + else + { + *total = sparc_costs->int_load; + } + + return true; + + case PLUS: + case MINUS: + if (float_mode_p) + *total = sparc_costs->float_plusminus; + else + *total = COSTS_N_INSNS (1); + return false; + + case FMA: + { + rtx sub; + + gcc_assert (float_mode_p); + *total = sparc_costs->float_mul; + + sub = XEXP (x, 0); + if (GET_CODE (sub) == NEG) + sub = XEXP (sub, 0); + *total += rtx_cost (sub, mode, FMA, 0, speed); + + sub = XEXP (x, 2); + if (GET_CODE (sub) == NEG) + sub = XEXP (sub, 0); + *total += rtx_cost (sub, mode, FMA, 2, speed); + return true; + } + + case MULT: + if (float_mode_p) + *total = sparc_costs->float_mul; + else if (TARGET_ARCH32 && !TARGET_HARD_MUL) + *total = COSTS_N_INSNS (25); + else + { + int bit_cost; + + bit_cost = 0; + if (sparc_costs->int_mul_bit_factor) + { + int nbits; + + if (GET_CODE (XEXP (x, 1)) == CONST_INT) + { + unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); + for (nbits = 0; value != 0; value &= value - 1) + nbits++; + } + else + nbits = 7; + + if (nbits < 3) + nbits = 3; + bit_cost = (nbits - 3) / sparc_costs->int_mul_bit_factor; + bit_cost = COSTS_N_INSNS (bit_cost); + } + + if (mode == DImode || !TARGET_HARD_MUL) + *total = sparc_costs->int_mulX + bit_cost; + else + *total = sparc_costs->int_mul + bit_cost; + } + return false; + + case ASHIFT: + case ASHIFTRT: + case LSHIFTRT: + *total = COSTS_N_INSNS (1) + sparc_costs->shift_penalty; + return false; + + case DIV: + case UDIV: + case MOD: + case UMOD: + if (float_mode_p) + { + if (mode == DFmode) + *total = sparc_costs->float_div_df; + else + *total = sparc_costs->float_div_sf; + } + else + { + if (mode == DImode) + *total = sparc_costs->int_divX; + else + *total = sparc_costs->int_div; + } + return false; + + case NEG: + if (! float_mode_p) + { + *total = COSTS_N_INSNS (1); + return false; + } + /* FALLTHRU */ + + case ABS: + case FLOAT: + case UNSIGNED_FLOAT: + case FIX: + case UNSIGNED_FIX: + case FLOAT_EXTEND: + case FLOAT_TRUNCATE: + *total = sparc_costs->float_move; + return false; + + case SQRT: + if (mode == DFmode) + *total = sparc_costs->float_sqrt_df; + else + *total = sparc_costs->float_sqrt_sf; + return false; + + case COMPARE: + if (float_mode_p) + *total = sparc_costs->float_cmp; + else + *total = COSTS_N_INSNS (1); + return false; + + case IF_THEN_ELSE: + if (float_mode_p) + *total = sparc_costs->float_cmove; + else + *total = sparc_costs->int_cmove; + return false; + + case IOR: + /* Handle the NAND vector patterns. */ + if (sparc_vector_mode_supported_p (mode) + && GET_CODE (XEXP (x, 0)) == NOT + && GET_CODE (XEXP (x, 1)) == NOT) + { + *total = COSTS_N_INSNS (1); + return true; + } + else + return false; + + default: + return false; + } +} + +/* Return true if CLASS is either GENERAL_REGS or I64_REGS. */ + +static inline bool +general_or_i64_p (reg_class_t rclass) +{ + return (rclass == GENERAL_REGS || rclass == I64_REGS); +} + +/* Implement TARGET_REGISTER_MOVE_COST. */ + +static int +sparc_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED, + reg_class_t from, reg_class_t to) +{ + bool need_memory = false; + + /* This helps postreload CSE to eliminate redundant comparisons. */ + if (from == NO_REGS || to == NO_REGS) + return 100; + + if (from == FPCC_REGS || to == FPCC_REGS) + need_memory = true; + else if ((FP_REG_CLASS_P (from) && general_or_i64_p (to)) + || (general_or_i64_p (from) && FP_REG_CLASS_P (to))) + { + if (TARGET_VIS3) + { + int size = GET_MODE_SIZE (mode); + if (size == 8 || size == 4) + { + if (! TARGET_ARCH32 || size == 4) + return 4; + else + return 6; + } + } + need_memory = true; + } + + if (need_memory) + { + if (sparc_cpu == PROCESSOR_ULTRASPARC + || sparc_cpu == PROCESSOR_ULTRASPARC3 + || sparc_cpu == PROCESSOR_NIAGARA + || sparc_cpu == PROCESSOR_NIAGARA2 + || sparc_cpu == PROCESSOR_NIAGARA3 + || sparc_cpu == PROCESSOR_NIAGARA4 + || sparc_cpu == PROCESSOR_NIAGARA7 + || sparc_cpu == PROCESSOR_M8) + return 12; + + return 6; + } + + return 2; +} + +/* Emit the sequence of insns SEQ while preserving the registers REG and REG2. + This is achieved by means of a manual dynamic stack space allocation in + the current frame. We make the assumption that SEQ doesn't contain any + function calls, with the possible exception of calls to the GOT helper. */ + +static void +emit_and_preserve (rtx seq, rtx reg, rtx reg2) +{ + /* We must preserve the lowest 16 words for the register save area. */ + HOST_WIDE_INT offset = 16*UNITS_PER_WORD; + /* We really need only 2 words of fresh stack space. */ + HOST_WIDE_INT size = SPARC_STACK_ALIGN (offset + 2*UNITS_PER_WORD); + + rtx slot + = gen_rtx_MEM (word_mode, plus_constant (Pmode, stack_pointer_rtx, + SPARC_STACK_BIAS + offset)); + + emit_insn (gen_stack_pointer_inc (GEN_INT (-size))); + emit_insn (gen_rtx_SET (slot, reg)); + if (reg2) + emit_insn (gen_rtx_SET (adjust_address (slot, word_mode, UNITS_PER_WORD), + reg2)); + emit_insn (seq); + if (reg2) + emit_insn (gen_rtx_SET (reg2, + adjust_address (slot, word_mode, UNITS_PER_WORD))); + emit_insn (gen_rtx_SET (reg, slot)); + emit_insn (gen_stack_pointer_inc (GEN_INT (size))); +} + +/* Output the assembler code for a thunk function. THUNK_DECL is the + declaration for the thunk function itself, FUNCTION is the decl for + the target function. DELTA is an immediate constant offset to be + added to THIS. If VCALL_OFFSET is nonzero, the word at address + (*THIS + VCALL_OFFSET) should be additionally added to THIS. */ + +static void +sparc_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED, + HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, + tree function) +{ + const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl)); + rtx this_rtx, funexp; + rtx_insn *insn; + unsigned int int_arg_first; + + reload_completed = 1; + epilogue_completed = 1; + + emit_note (NOTE_INSN_PROLOGUE_END); + + if (TARGET_FLAT) + { + sparc_leaf_function_p = 1; + + int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST; + } + else if (flag_delayed_branch) + { + /* We will emit a regular sibcall below, so we need to instruct + output_sibcall that we are in a leaf function. */ + sparc_leaf_function_p = crtl->uses_only_leaf_regs = 1; + + /* This will cause final.c to invoke leaf_renumber_regs so we + must behave as if we were in a not-yet-leafified function. */ + int_arg_first = SPARC_INCOMING_INT_ARG_FIRST; + } + else + { + /* We will emit the sibcall manually below, so we will need to + manually spill non-leaf registers. */ + sparc_leaf_function_p = crtl->uses_only_leaf_regs = 0; + + /* We really are in a leaf function. */ + int_arg_first = SPARC_OUTGOING_INT_ARG_FIRST; + } + + /* Find the "this" pointer. Normally in %o0, but in ARCH64 if the function + returns a structure, the structure return pointer is there instead. */ + if (TARGET_ARCH64 + && aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)) + this_rtx = gen_rtx_REG (Pmode, int_arg_first + 1); + else + this_rtx = gen_rtx_REG (Pmode, int_arg_first); + + /* Add DELTA. When possible use a plain add, otherwise load it into + a register first. */ + if (delta) + { + rtx delta_rtx = GEN_INT (delta); + + if (! SPARC_SIMM13_P (delta)) + { + rtx scratch = gen_rtx_REG (Pmode, 1); + emit_move_insn (scratch, delta_rtx); + delta_rtx = scratch; + } + + /* THIS_RTX += DELTA. */ + emit_insn (gen_add2_insn (this_rtx, delta_rtx)); + } + + /* Add the word at address (*THIS_RTX + VCALL_OFFSET). */ + if (vcall_offset) + { + rtx vcall_offset_rtx = GEN_INT (vcall_offset); + rtx scratch = gen_rtx_REG (Pmode, 1); + + gcc_assert (vcall_offset < 0); + + /* SCRATCH = *THIS_RTX. */ + emit_move_insn (scratch, gen_rtx_MEM (Pmode, this_rtx)); + + /* Prepare for adding VCALL_OFFSET. The difficulty is that we + may not have any available scratch register at this point. */ + if (SPARC_SIMM13_P (vcall_offset)) + ; + /* This is the case if ARCH64 (unless -ffixed-g5 is passed). */ + else if (! fixed_regs[5] + /* The below sequence is made up of at least 2 insns, + while the default method may need only one. */ + && vcall_offset < -8192) + { + rtx scratch2 = gen_rtx_REG (Pmode, 5); + emit_move_insn (scratch2, vcall_offset_rtx); + vcall_offset_rtx = scratch2; + } + else + { + rtx increment = GEN_INT (-4096); + + /* VCALL_OFFSET is a negative number whose typical range can be + estimated as -32768..0 in 32-bit mode. In almost all cases + it is therefore cheaper to emit multiple add insns than + spilling and loading the constant into a register (at least + 6 insns). */ + while (! SPARC_SIMM13_P (vcall_offset)) + { + emit_insn (gen_add2_insn (scratch, increment)); + vcall_offset += 4096; + } + vcall_offset_rtx = GEN_INT (vcall_offset); /* cannot be 0 */ + } + + /* SCRATCH = *(*THIS_RTX + VCALL_OFFSET). */ + emit_move_insn (scratch, gen_rtx_MEM (Pmode, + gen_rtx_PLUS (Pmode, + scratch, + vcall_offset_rtx))); + + /* THIS_RTX += *(*THIS_RTX + VCALL_OFFSET). */ + emit_insn (gen_add2_insn (this_rtx, scratch)); + } + + /* Generate a tail call to the target function. */ + if (! TREE_USED (function)) + { + assemble_external (function); + TREE_USED (function) = 1; + } + funexp = XEXP (DECL_RTL (function), 0); + + if (flag_delayed_branch) + { + funexp = gen_rtx_MEM (FUNCTION_MODE, funexp); + insn = emit_call_insn (gen_sibcall (funexp)); + SIBLING_CALL_P (insn) = 1; + } + else + { + /* The hoops we have to jump through in order to generate a sibcall + without using delay slots... */ + rtx spill_reg, seq, scratch = gen_rtx_REG (Pmode, 1); + + if (flag_pic) + { + spill_reg = gen_rtx_REG (word_mode, 15); /* %o7 */ + start_sequence (); + load_got_register (); /* clobbers %o7 */ + if (!TARGET_VXWORKS_RTP) + pic_offset_table_rtx = got_register_rtx; + scratch = sparc_legitimize_pic_address (funexp, scratch); + seq = get_insns (); + end_sequence (); + emit_and_preserve (seq, spill_reg, pic_offset_table_rtx); + } + else if (TARGET_ARCH32) + { + emit_insn (gen_rtx_SET (scratch, + gen_rtx_HIGH (SImode, funexp))); + emit_insn (gen_rtx_SET (scratch, + gen_rtx_LO_SUM (SImode, scratch, funexp))); + } + else /* TARGET_ARCH64 */ + { + switch (sparc_code_model) + { + case CM_MEDLOW: + case CM_MEDMID: + /* The destination can serve as a temporary. */ + sparc_emit_set_symbolic_const64 (scratch, funexp, scratch); + break; + + case CM_MEDANY: + case CM_EMBMEDANY: + /* The destination cannot serve as a temporary. */ + spill_reg = gen_rtx_REG (DImode, 15); /* %o7 */ + start_sequence (); + sparc_emit_set_symbolic_const64 (scratch, funexp, spill_reg); + seq = get_insns (); + end_sequence (); + emit_and_preserve (seq, spill_reg, 0); + break; + + default: + gcc_unreachable (); + } + } + + emit_jump_insn (gen_indirect_jump (scratch)); + } + + emit_barrier (); + + /* Run just enough of rest_of_compilation to get the insns emitted. + There's not really enough bulk here to make other passes such as + instruction scheduling worth while. */ + insn = get_insns (); + shorten_branches (insn); + assemble_start_function (thunk_fndecl, fnname); + final_start_function (insn, file, 1); + final (insn, file, 1); + final_end_function (); + assemble_end_function (thunk_fndecl, fnname); + + reload_completed = 0; + epilogue_completed = 0; +} + +/* Return true if sparc_output_mi_thunk would be able to output the + assembler code for the thunk function specified by the arguments + it is passed, and false otherwise. */ +static bool +sparc_can_output_mi_thunk (const_tree thunk_fndecl ATTRIBUTE_UNUSED, + HOST_WIDE_INT delta ATTRIBUTE_UNUSED, + HOST_WIDE_INT vcall_offset, + const_tree function ATTRIBUTE_UNUSED) +{ + /* Bound the loop used in the default method above. */ + return (vcall_offset >= -32768 || ! fixed_regs[5]); +} + +/* How to allocate a 'struct machine_function'. */ + +static struct machine_function * +sparc_init_machine_status (void) +{ + return ggc_cleared_alloc (); +} + +/* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */ + +static unsigned HOST_WIDE_INT +sparc_asan_shadow_offset (void) +{ + return TARGET_ARCH64 ? (HOST_WIDE_INT_1 << 43) : (HOST_WIDE_INT_1 << 29); +} + +/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. + We need to emit DTP-relative relocations. */ + +static void +sparc_output_dwarf_dtprel (FILE *file, int size, rtx x) +{ + switch (size) + { + case 4: + fputs ("\t.word\t%r_tls_dtpoff32(", file); + break; + case 8: + fputs ("\t.xword\t%r_tls_dtpoff64(", file); + break; + default: + gcc_unreachable (); + } + output_addr_const (file, x); + fputs (")", file); +} + +/* Do whatever processing is required at the end of a file. */ + +static void +sparc_file_end (void) +{ + /* If we need to emit the special GOT helper function, do so now. */ + if (got_helper_needed) + { + const char *name = XSTR (got_helper_rtx, 0); +#ifdef DWARF2_UNWIND_INFO + bool do_cfi; +#endif + + if (USE_HIDDEN_LINKONCE) + { + tree decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, + get_identifier (name), + build_function_type_list (void_type_node, + NULL_TREE)); + DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, + NULL_TREE, void_type_node); + TREE_PUBLIC (decl) = 1; + TREE_STATIC (decl) = 1; + make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl)); + DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN; + DECL_VISIBILITY_SPECIFIED (decl) = 1; + resolve_unique_section (decl, 0, flag_function_sections); + allocate_struct_function (decl, true); + cfun->is_thunk = 1; + current_function_decl = decl; + init_varasm_status (); + assemble_start_function (decl, name); + } + else + { + const int align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT); + switch_to_section (text_section); + if (align > 0) + ASM_OUTPUT_ALIGN (asm_out_file, align); + ASM_OUTPUT_LABEL (asm_out_file, name); + } + +#ifdef DWARF2_UNWIND_INFO + do_cfi = dwarf2out_do_cfi_asm (); + if (do_cfi) + output_asm_insn (".cfi_startproc", NULL); +#endif + if (flag_delayed_branch) + { + output_asm_insn ("jmp\t%%o7+8", NULL); + output_asm_insn (" add\t%%o7, %0, %0", &got_register_rtx); + } + else + { + output_asm_insn ("add\t%%o7, %0, %0", &got_register_rtx); + output_asm_insn ("jmp\t%%o7+8", NULL); + output_asm_insn (" nop", NULL); + } +#ifdef DWARF2_UNWIND_INFO + if (do_cfi) + output_asm_insn (".cfi_endproc", NULL); +#endif + } + + if (NEED_INDICATE_EXEC_STACK) + file_end_indicate_exec_stack (); + +#ifdef TARGET_SOLARIS + solaris_file_end (); +#endif +} + +#ifdef TARGET_ALTERNATE_LONG_DOUBLE_MANGLING +/* Implement TARGET_MANGLE_TYPE. */ + +static const char * +sparc_mangle_type (const_tree type) +{ + if (TARGET_ARCH32 + && TYPE_MAIN_VARIANT (type) == long_double_type_node + && TARGET_LONG_DOUBLE_128) + return "g"; + + /* For all other types, use normal C++ mangling. */ + return NULL; +} +#endif + +/* Expand a membar instruction for various use cases. Both the LOAD_STORE + and BEFORE_AFTER arguments of the form X_Y. They are two-bit masks where + bit 0 indicates that X is true, and bit 1 indicates Y is true. */ + +void +sparc_emit_membar_for_model (enum memmodel model, + int load_store, int before_after) +{ + /* Bits for the MEMBAR mmask field. */ + const int LoadLoad = 1; + const int StoreLoad = 2; + const int LoadStore = 4; + const int StoreStore = 8; + + int mm = 0, implied = 0; + + switch (sparc_memory_model) + { + case SMM_SC: + /* Sequential Consistency. All memory transactions are immediately + visible in sequential execution order. No barriers needed. */ + implied = LoadLoad | StoreLoad | LoadStore | StoreStore; + break; + + case SMM_TSO: + /* Total Store Ordering: all memory transactions with store semantics + are followed by an implied StoreStore. */ + implied |= StoreStore; + + /* If we're not looking for a raw barrer (before+after), then atomic + operations get the benefit of being both load and store. */ + if (load_store == 3 && before_after == 1) + implied |= StoreLoad; + /* FALLTHRU */ + + case SMM_PSO: + /* Partial Store Ordering: all memory transactions with load semantics + are followed by an implied LoadLoad | LoadStore. */ + implied |= LoadLoad | LoadStore; + + /* If we're not looking for a raw barrer (before+after), then atomic + operations get the benefit of being both load and store. */ + if (load_store == 3 && before_after == 2) + implied |= StoreLoad | StoreStore; + /* FALLTHRU */ + + case SMM_RMO: + /* Relaxed Memory Ordering: no implicit bits. */ + break; + + default: + gcc_unreachable (); + } + + if (before_after & 1) + { + if (is_mm_release (model) || is_mm_acq_rel (model) + || is_mm_seq_cst (model)) + { + if (load_store & 1) + mm |= LoadLoad | StoreLoad; + if (load_store & 2) + mm |= LoadStore | StoreStore; + } + } + if (before_after & 2) + { + if (is_mm_acquire (model) || is_mm_acq_rel (model) + || is_mm_seq_cst (model)) + { + if (load_store & 1) + mm |= LoadLoad | LoadStore; + if (load_store & 2) + mm |= StoreLoad | StoreStore; + } + } + + /* Remove the bits implied by the system memory model. */ + mm &= ~implied; + + /* For raw barriers (before+after), always emit a barrier. + This will become a compile-time barrier if needed. */ + if (mm || before_after == 3) + emit_insn (gen_membar (GEN_INT (mm))); +} + +/* Expand code to perform a 8 or 16-bit compare and swap by doing 32-bit + compare and swap on the word containing the byte or half-word. */ + +static void +sparc_expand_compare_and_swap_12 (rtx bool_result, rtx result, rtx mem, + rtx oldval, rtx newval) +{ + rtx addr1 = force_reg (Pmode, XEXP (mem, 0)); + rtx addr = gen_reg_rtx (Pmode); + rtx off = gen_reg_rtx (SImode); + rtx oldv = gen_reg_rtx (SImode); + rtx newv = gen_reg_rtx (SImode); + rtx oldvalue = gen_reg_rtx (SImode); + rtx newvalue = gen_reg_rtx (SImode); + rtx res = gen_reg_rtx (SImode); + rtx resv = gen_reg_rtx (SImode); + rtx memsi, val, mask, cc; + + emit_insn (gen_rtx_SET (addr, gen_rtx_AND (Pmode, addr1, GEN_INT (-4)))); + + if (Pmode != SImode) + addr1 = gen_lowpart (SImode, addr1); + emit_insn (gen_rtx_SET (off, gen_rtx_AND (SImode, addr1, GEN_INT (3)))); + + memsi = gen_rtx_MEM (SImode, addr); + set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER); + MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem); + + val = copy_to_reg (memsi); + + emit_insn (gen_rtx_SET (off, + gen_rtx_XOR (SImode, off, + GEN_INT (GET_MODE (mem) == QImode + ? 3 : 2)))); + + emit_insn (gen_rtx_SET (off, gen_rtx_ASHIFT (SImode, off, GEN_INT (3)))); + + if (GET_MODE (mem) == QImode) + mask = force_reg (SImode, GEN_INT (0xff)); + else + mask = force_reg (SImode, GEN_INT (0xffff)); + + emit_insn (gen_rtx_SET (mask, gen_rtx_ASHIFT (SImode, mask, off))); + + emit_insn (gen_rtx_SET (val, + gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask), + val))); + + oldval = gen_lowpart (SImode, oldval); + emit_insn (gen_rtx_SET (oldv, gen_rtx_ASHIFT (SImode, oldval, off))); + + newval = gen_lowpart_common (SImode, newval); + emit_insn (gen_rtx_SET (newv, gen_rtx_ASHIFT (SImode, newval, off))); + + emit_insn (gen_rtx_SET (oldv, gen_rtx_AND (SImode, oldv, mask))); + + emit_insn (gen_rtx_SET (newv, gen_rtx_AND (SImode, newv, mask))); + + rtx_code_label *end_label = gen_label_rtx (); + rtx_code_label *loop_label = gen_label_rtx (); + emit_label (loop_label); + + emit_insn (gen_rtx_SET (oldvalue, gen_rtx_IOR (SImode, oldv, val))); + + emit_insn (gen_rtx_SET (newvalue, gen_rtx_IOR (SImode, newv, val))); + + emit_move_insn (bool_result, const1_rtx); + + emit_insn (gen_atomic_compare_and_swapsi_1 (res, memsi, oldvalue, newvalue)); + + emit_cmp_and_jump_insns (res, oldvalue, EQ, NULL, SImode, 0, end_label); + + emit_insn (gen_rtx_SET (resv, + gen_rtx_AND (SImode, gen_rtx_NOT (SImode, mask), + res))); + + emit_move_insn (bool_result, const0_rtx); + + cc = gen_compare_reg_1 (NE, resv, val); + emit_insn (gen_rtx_SET (val, resv)); + + /* Use cbranchcc4 to separate the compare and branch! */ + emit_jump_insn (gen_cbranchcc4 (gen_rtx_NE (VOIDmode, cc, const0_rtx), + cc, const0_rtx, loop_label)); + + emit_label (end_label); + + emit_insn (gen_rtx_SET (res, gen_rtx_AND (SImode, res, mask))); + + emit_insn (gen_rtx_SET (res, gen_rtx_LSHIFTRT (SImode, res, off))); + + emit_move_insn (result, gen_lowpart (GET_MODE (result), res)); +} + +/* Expand code to perform a compare-and-swap. */ + +void +sparc_expand_compare_and_swap (rtx operands[]) +{ + rtx bval, retval, mem, oldval, newval; + machine_mode mode; + enum memmodel model; + + bval = operands[0]; + retval = operands[1]; + mem = operands[2]; + oldval = operands[3]; + newval = operands[4]; + model = (enum memmodel) INTVAL (operands[6]); + mode = GET_MODE (mem); + + sparc_emit_membar_for_model (model, 3, 1); + + if (reg_overlap_mentioned_p (retval, oldval)) + oldval = copy_to_reg (oldval); + + if (mode == QImode || mode == HImode) + sparc_expand_compare_and_swap_12 (bval, retval, mem, oldval, newval); + else + { + rtx (*gen) (rtx, rtx, rtx, rtx); + rtx x; + + if (mode == SImode) + gen = gen_atomic_compare_and_swapsi_1; + else + gen = gen_atomic_compare_and_swapdi_1; + emit_insn (gen (retval, mem, oldval, newval)); + + x = emit_store_flag (bval, EQ, retval, oldval, mode, 1, 1); + if (x != bval) + convert_move (bval, x, 1); + } + + sparc_emit_membar_for_model (model, 3, 2); +} + +void +sparc_expand_vec_perm_bmask (machine_mode vmode, rtx sel) +{ + rtx t_1, t_2, t_3; + + sel = gen_lowpart (DImode, sel); + switch (vmode) + { + case E_V2SImode: + /* inp = xxxxxxxAxxxxxxxB */ + t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16), + NULL_RTX, 1, OPTAB_DIRECT); + /* t_1 = ....xxxxxxxAxxx. */ + sel = expand_simple_binop (SImode, AND, gen_lowpart (SImode, sel), + GEN_INT (3), NULL_RTX, 1, OPTAB_DIRECT); + t_1 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_1), + GEN_INT (0x30000), NULL_RTX, 1, OPTAB_DIRECT); + /* sel = .......B */ + /* t_1 = ...A.... */ + sel = expand_simple_binop (SImode, IOR, sel, t_1, sel, 1, OPTAB_DIRECT); + /* sel = ...A...B */ + sel = expand_mult (SImode, sel, GEN_INT (0x4444), sel, 1); + /* sel = AAAABBBB * 4 */ + t_1 = force_reg (SImode, GEN_INT (0x01230123)); + /* sel = { A*4, A*4+1, A*4+2, ... } */ + break; + + case E_V4HImode: + /* inp = xxxAxxxBxxxCxxxD */ + t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (8), + NULL_RTX, 1, OPTAB_DIRECT); + t_2 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16), + NULL_RTX, 1, OPTAB_DIRECT); + t_3 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (24), + NULL_RTX, 1, OPTAB_DIRECT); + /* t_1 = ..xxxAxxxBxxxCxx */ + /* t_2 = ....xxxAxxxBxxxC */ + /* t_3 = ......xxxAxxxBxx */ + sel = expand_simple_binop (SImode, AND, gen_lowpart (SImode, sel), + GEN_INT (0x07), + NULL_RTX, 1, OPTAB_DIRECT); + t_1 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_1), + GEN_INT (0x0700), + NULL_RTX, 1, OPTAB_DIRECT); + t_2 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_2), + GEN_INT (0x070000), + NULL_RTX, 1, OPTAB_DIRECT); + t_3 = expand_simple_binop (SImode, AND, gen_lowpart (SImode, t_3), + GEN_INT (0x07000000), + NULL_RTX, 1, OPTAB_DIRECT); + /* sel = .......D */ + /* t_1 = .....C.. */ + /* t_2 = ...B.... */ + /* t_3 = .A...... */ + sel = expand_simple_binop (SImode, IOR, sel, t_1, sel, 1, OPTAB_DIRECT); + t_2 = expand_simple_binop (SImode, IOR, t_2, t_3, t_2, 1, OPTAB_DIRECT); + sel = expand_simple_binop (SImode, IOR, sel, t_2, sel, 1, OPTAB_DIRECT); + /* sel = .A.B.C.D */ + sel = expand_mult (SImode, sel, GEN_INT (0x22), sel, 1); + /* sel = AABBCCDD * 2 */ + t_1 = force_reg (SImode, GEN_INT (0x01010101)); + /* sel = { A*2, A*2+1, B*2, B*2+1, ... } */ + break; + + case E_V8QImode: + /* input = xAxBxCxDxExFxGxH */ + sel = expand_simple_binop (DImode, AND, sel, + GEN_INT ((HOST_WIDE_INT)0x0f0f0f0f << 32 + | 0x0f0f0f0f), + NULL_RTX, 1, OPTAB_DIRECT); + /* sel = .A.B.C.D.E.F.G.H */ + t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (4), + NULL_RTX, 1, OPTAB_DIRECT); + /* t_1 = ..A.B.C.D.E.F.G. */ + sel = expand_simple_binop (DImode, IOR, sel, t_1, + NULL_RTX, 1, OPTAB_DIRECT); + /* sel = .AABBCCDDEEFFGGH */ + sel = expand_simple_binop (DImode, AND, sel, + GEN_INT ((HOST_WIDE_INT)0xff00ff << 32 + | 0xff00ff), + NULL_RTX, 1, OPTAB_DIRECT); + /* sel = ..AB..CD..EF..GH */ + t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (8), + NULL_RTX, 1, OPTAB_DIRECT); + /* t_1 = ....AB..CD..EF.. */ + sel = expand_simple_binop (DImode, IOR, sel, t_1, + NULL_RTX, 1, OPTAB_DIRECT); + /* sel = ..ABABCDCDEFEFGH */ + sel = expand_simple_binop (DImode, AND, sel, + GEN_INT ((HOST_WIDE_INT)0xffff << 32 | 0xffff), + NULL_RTX, 1, OPTAB_DIRECT); + /* sel = ....ABCD....EFGH */ + t_1 = expand_simple_binop (DImode, LSHIFTRT, sel, GEN_INT (16), + NULL_RTX, 1, OPTAB_DIRECT); + /* t_1 = ........ABCD.... */ + sel = gen_lowpart (SImode, sel); + t_1 = gen_lowpart (SImode, t_1); + break; + + default: + gcc_unreachable (); + } + + /* Always perform the final addition/merge within the bmask insn. */ + emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), sel, t_1)); +} + +/* Implement TARGET_VEC_PERM_CONST. */ + +static bool +sparc_vectorize_vec_perm_const (machine_mode vmode, rtx target, rtx op0, + rtx op1, const vec_perm_indices &sel) +{ + if (!TARGET_VIS2) + return false; + + /* All permutes are supported. */ + if (!target) + return true; + + /* Force target-independent code to convert constant permutations on other + modes down to V8QI. Rely on this to avoid the complexity of the byte + order of the permutation. */ + if (vmode != V8QImode) + return false; + + unsigned int i, mask; + for (i = mask = 0; i < 8; ++i) + mask |= (sel[i] & 0xf) << (28 - i*4); + rtx mask_rtx = force_reg (SImode, gen_int_mode (mask, SImode)); + + emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), mask_rtx, const0_rtx)); + emit_insn (gen_bshufflev8qi_vis (target, op0, op1)); + return true; +} + +/* Implement TARGET_FRAME_POINTER_REQUIRED. */ + +static bool +sparc_frame_pointer_required (void) +{ + /* If the stack pointer is dynamically modified in the function, it cannot + serve as the frame pointer. */ + if (cfun->calls_alloca) + return true; + + /* If the function receives nonlocal gotos, it needs to save the frame + pointer in the nonlocal_goto_save_area object. */ + if (cfun->has_nonlocal_label) + return true; + + /* In flat mode, that's it. */ + if (TARGET_FLAT) + return false; + + /* Otherwise, the frame pointer is required if the function isn't leaf, but + we cannot use sparc_leaf_function_p since it hasn't been computed yet. */ + return !(optimize > 0 && crtl->is_leaf && only_leaf_regs_used ()); +} + +/* The way this is structured, we can't eliminate SFP in favor of SP + if the frame pointer is required: we want to use the SFP->HFP elimination + in that case. But the test in update_eliminables doesn't know we are + assuming below that we only do the former elimination. */ + +static bool +sparc_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to) +{ + return to == HARD_FRAME_POINTER_REGNUM || !sparc_frame_pointer_required (); +} + +/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that + they won't be allocated. */ + +static void +sparc_conditional_register_usage (void) +{ + if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) + fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; + /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ + /* then honor it. */ + if (TARGET_ARCH32 && fixed_regs[5]) + fixed_regs[5] = 1; + else if (TARGET_ARCH64 && fixed_regs[5] == 2) + fixed_regs[5] = 0; + if (! TARGET_V9) + { + int regno; + for (regno = SPARC_FIRST_V9_FP_REG; + regno <= SPARC_LAST_V9_FP_REG; + regno++) + fixed_regs[regno] = 1; + /* %fcc0 is used by v8 and v9. */ + for (regno = SPARC_FIRST_V9_FCC_REG + 1; + regno <= SPARC_LAST_V9_FCC_REG; + regno++) + fixed_regs[regno] = 1; + } + if (! TARGET_FPU) + { + int regno; + for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) + fixed_regs[regno] = 1; + } + /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ + /* then honor it. Likewise with g3 and g4. */ + if (fixed_regs[2] == 2) + fixed_regs[2] = ! TARGET_APP_REGS; + if (fixed_regs[3] == 2) + fixed_regs[3] = ! TARGET_APP_REGS; + if (TARGET_ARCH32 && fixed_regs[4] == 2) + fixed_regs[4] = ! TARGET_APP_REGS; + else if (TARGET_CM_EMBMEDANY) + fixed_regs[4] = 1; + else if (fixed_regs[4] == 2) + fixed_regs[4] = 0; + if (TARGET_FLAT) + { + int regno; + /* Disable leaf functions. */ + memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + leaf_reg_remap [regno] = regno; + } + if (TARGET_VIS) + global_regs[SPARC_GSR_REG] = 1; +} + +/* Implement TARGET_USE_PSEUDO_PIC_REG. */ + +static bool +sparc_use_pseudo_pic_reg (void) +{ + return !TARGET_VXWORKS_RTP && flag_pic; +} + +/* Implement TARGET_INIT_PIC_REG. */ + +static void +sparc_init_pic_reg (void) +{ + edge entry_edge; + rtx_insn *seq; + + /* In PIC mode, we need to always initialize the PIC register if optimization + is enabled, because we are called from IRA and LRA may later force things + to the constant pool for optimization purposes. */ + if (!flag_pic || (!crtl->uses_pic_offset_table && !optimize)) + return; + + start_sequence (); + load_got_register (); + if (!TARGET_VXWORKS_RTP) + emit_move_insn (pic_offset_table_rtx, got_register_rtx); + seq = get_insns (); + end_sequence (); + + entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); + insert_insn_on_edge (seq, entry_edge); + commit_one_edge_insertion (entry_edge); +} + +/* Implement TARGET_PREFERRED_RELOAD_CLASS: + + - We can't load constants into FP registers. + - We can't load FP constants into integer registers when soft-float, + because there is no soft-float pattern with a r/F constraint. + - We can't load FP constants into integer registers for TFmode unless + it is 0.0L, because there is no movtf pattern with a r/F constraint. + - Try and reload integer constants (symbolic or otherwise) back into + registers directly, rather than having them dumped to memory. */ + +static reg_class_t +sparc_preferred_reload_class (rtx x, reg_class_t rclass) +{ + machine_mode mode = GET_MODE (x); + if (CONSTANT_P (x)) + { + if (FP_REG_CLASS_P (rclass) + || rclass == GENERAL_OR_FP_REGS + || rclass == GENERAL_OR_EXTRA_FP_REGS + || (GET_MODE_CLASS (mode) == MODE_FLOAT && ! TARGET_FPU) + || (mode == TFmode && ! const_zero_operand (x, mode))) + return NO_REGS; + + if (GET_MODE_CLASS (mode) == MODE_INT) + return GENERAL_REGS; + + if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT) + { + if (! FP_REG_CLASS_P (rclass) + || !(const_zero_operand (x, mode) + || const_all_ones_operand (x, mode))) + return NO_REGS; + } + } + + if (TARGET_VIS3 + && ! TARGET_ARCH64 + && (rclass == EXTRA_FP_REGS + || rclass == GENERAL_OR_EXTRA_FP_REGS)) + { + int regno = true_regnum (x); + + if (SPARC_INT_REG_P (regno)) + return (rclass == EXTRA_FP_REGS + ? FP_REGS : GENERAL_OR_FP_REGS); + } + + return rclass; +} + +/* Return true if we use LRA instead of reload pass. */ + +static bool +sparc_lra_p (void) +{ + return TARGET_LRA; +} + +/* Output a wide multiply instruction in V8+ mode. INSN is the instruction, + OPERANDS are its operands and OPCODE is the mnemonic to be used. */ + +const char * +output_v8plus_mult (rtx_insn *insn, rtx *operands, const char *opcode) +{ + char mulstr[32]; + + gcc_assert (! TARGET_ARCH64); + + if (sparc_check_64 (operands[1], insn) <= 0) + output_asm_insn ("srl\t%L1, 0, %L1", operands); + if (which_alternative == 1) + output_asm_insn ("sllx\t%H1, 32, %H1", operands); + if (GET_CODE (operands[2]) == CONST_INT) + { + if (which_alternative == 1) + { + output_asm_insn ("or\t%L1, %H1, %H1", operands); + sprintf (mulstr, "%s\t%%H1, %%2, %%L0", opcode); + output_asm_insn (mulstr, operands); + return "srlx\t%L0, 32, %H0"; + } + else + { + output_asm_insn ("sllx\t%H1, 32, %3", operands); + output_asm_insn ("or\t%L1, %3, %3", operands); + sprintf (mulstr, "%s\t%%3, %%2, %%3", opcode); + output_asm_insn (mulstr, operands); + output_asm_insn ("srlx\t%3, 32, %H0", operands); + return "mov\t%3, %L0"; + } + } + else if (rtx_equal_p (operands[1], operands[2])) + { + if (which_alternative == 1) + { + output_asm_insn ("or\t%L1, %H1, %H1", operands); + sprintf (mulstr, "%s\t%%H1, %%H1, %%L0", opcode); + output_asm_insn (mulstr, operands); + return "srlx\t%L0, 32, %H0"; + } + else + { + output_asm_insn ("sllx\t%H1, 32, %3", operands); + output_asm_insn ("or\t%L1, %3, %3", operands); + sprintf (mulstr, "%s\t%%3, %%3, %%3", opcode); + output_asm_insn (mulstr, operands); + output_asm_insn ("srlx\t%3, 32, %H0", operands); + return "mov\t%3, %L0"; + } + } + if (sparc_check_64 (operands[2], insn) <= 0) + output_asm_insn ("srl\t%L2, 0, %L2", operands); + if (which_alternative == 1) + { + output_asm_insn ("or\t%L1, %H1, %H1", operands); + output_asm_insn ("sllx\t%H2, 32, %L1", operands); + output_asm_insn ("or\t%L2, %L1, %L1", operands); + sprintf (mulstr, "%s\t%%H1, %%L1, %%L0", opcode); + output_asm_insn (mulstr, operands); + return "srlx\t%L0, 32, %H0"; + } + else + { + output_asm_insn ("sllx\t%H1, 32, %3", operands); + output_asm_insn ("sllx\t%H2, 32, %4", operands); + output_asm_insn ("or\t%L1, %3, %3", operands); + output_asm_insn ("or\t%L2, %4, %4", operands); + sprintf (mulstr, "%s\t%%3, %%4, %%3", opcode); + output_asm_insn (mulstr, operands); + output_asm_insn ("srlx\t%3, 32, %H0", operands); + return "mov\t%3, %L0"; + } +} + +/* Subroutine of sparc_expand_vector_init. Emit code to initialize + all fields of TARGET to ELT by means of VIS2 BSHUFFLE insn. MODE + and INNER_MODE are the modes describing TARGET. */ + +static void +vector_init_bshuffle (rtx target, rtx elt, machine_mode mode, + machine_mode inner_mode) +{ + rtx t1, final_insn, sel; + int bmask; + + t1 = gen_reg_rtx (mode); + + elt = convert_modes (SImode, inner_mode, elt, true); + emit_move_insn (gen_lowpart(SImode, t1), elt); + + switch (mode) + { + case E_V2SImode: + final_insn = gen_bshufflev2si_vis (target, t1, t1); + bmask = 0x45674567; + break; + case E_V4HImode: + final_insn = gen_bshufflev4hi_vis (target, t1, t1); + bmask = 0x67676767; + break; + case E_V8QImode: + final_insn = gen_bshufflev8qi_vis (target, t1, t1); + bmask = 0x77777777; + break; + default: + gcc_unreachable (); + } + + sel = force_reg (SImode, GEN_INT (bmask)); + emit_insn (gen_bmasksi_vis (gen_reg_rtx (SImode), sel, const0_rtx)); + emit_insn (final_insn); +} + +/* Subroutine of sparc_expand_vector_init. Emit code to initialize + all fields of TARGET to ELT in V8QI by means of VIS FPMERGE insn. */ + +static void +vector_init_fpmerge (rtx target, rtx elt) +{ + rtx t1, t2, t2_low, t3, t3_low; + + t1 = gen_reg_rtx (V4QImode); + elt = convert_modes (SImode, QImode, elt, true); + emit_move_insn (gen_lowpart (SImode, t1), elt); + + t2 = gen_reg_rtx (V8QImode); + t2_low = gen_lowpart (V4QImode, t2); + emit_insn (gen_fpmerge_vis (t2, t1, t1)); + + t3 = gen_reg_rtx (V8QImode); + t3_low = gen_lowpart (V4QImode, t3); + emit_insn (gen_fpmerge_vis (t3, t2_low, t2_low)); + + emit_insn (gen_fpmerge_vis (target, t3_low, t3_low)); +} + +/* Subroutine of sparc_expand_vector_init. Emit code to initialize + all fields of TARGET to ELT in V4HI by means of VIS FALIGNDATA insn. */ + +static void +vector_init_faligndata (rtx target, rtx elt) +{ + rtx t1 = gen_reg_rtx (V4HImode); + int i; + + elt = convert_modes (SImode, HImode, elt, true); + emit_move_insn (gen_lowpart (SImode, t1), elt); + + emit_insn (gen_alignaddrsi_vis (gen_reg_rtx (SImode), + force_reg (SImode, GEN_INT (6)), + const0_rtx)); + + for (i = 0; i < 4; i++) + emit_insn (gen_faligndatav4hi_vis (target, t1, target)); +} + +/* Emit code to initialize TARGET to values for individual fields VALS. */ + +void +sparc_expand_vector_init (rtx target, rtx vals) +{ + const machine_mode mode = GET_MODE (target); + const machine_mode inner_mode = GET_MODE_INNER (mode); + const int n_elts = GET_MODE_NUNITS (mode); + int i, n_var = 0; + bool all_same = true; + rtx mem; + + for (i = 0; i < n_elts; i++) + { + rtx x = XVECEXP (vals, 0, i); + if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x))) + n_var++; + + if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0))) + all_same = false; + } + + if (n_var == 0) + { + emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0))); + return; + } + + if (GET_MODE_SIZE (inner_mode) == GET_MODE_SIZE (mode)) + { + if (GET_MODE_SIZE (inner_mode) == 4) + { + emit_move_insn (gen_lowpart (SImode, target), + gen_lowpart (SImode, XVECEXP (vals, 0, 0))); + return; + } + else if (GET_MODE_SIZE (inner_mode) == 8) + { + emit_move_insn (gen_lowpart (DImode, target), + gen_lowpart (DImode, XVECEXP (vals, 0, 0))); + return; + } + } + else if (GET_MODE_SIZE (inner_mode) == GET_MODE_SIZE (word_mode) + && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode)) + { + emit_move_insn (gen_highpart (word_mode, target), + gen_lowpart (word_mode, XVECEXP (vals, 0, 0))); + emit_move_insn (gen_lowpart (word_mode, target), + gen_lowpart (word_mode, XVECEXP (vals, 0, 1))); + return; + } + + if (all_same && GET_MODE_SIZE (mode) == 8) + { + if (TARGET_VIS2) + { + vector_init_bshuffle (target, XVECEXP (vals, 0, 0), mode, inner_mode); + return; + } + if (mode == V8QImode) + { + vector_init_fpmerge (target, XVECEXP (vals, 0, 0)); + return; + } + if (mode == V4HImode) + { + vector_init_faligndata (target, XVECEXP (vals, 0, 0)); + return; + } + } + + mem = assign_stack_temp (mode, GET_MODE_SIZE (mode)); + for (i = 0; i < n_elts; i++) + emit_move_insn (adjust_address_nv (mem, inner_mode, + i * GET_MODE_SIZE (inner_mode)), + XVECEXP (vals, 0, i)); + emit_move_insn (target, mem); +} + +/* Implement TARGET_SECONDARY_RELOAD. */ + +static reg_class_t +sparc_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i, + machine_mode mode, secondary_reload_info *sri) +{ + enum reg_class rclass = (enum reg_class) rclass_i; + + sri->icode = CODE_FOR_nothing; + sri->extra_cost = 0; + + /* We need a temporary when loading/storing a HImode/QImode value + between memory and the FPU registers. This can happen when combine puts + a paradoxical subreg in a float/fix conversion insn. */ + if (FP_REG_CLASS_P (rclass) + && (mode == HImode || mode == QImode) + && (GET_CODE (x) == MEM + || ((GET_CODE (x) == REG || GET_CODE (x) == SUBREG) + && true_regnum (x) == -1))) + return GENERAL_REGS; + + /* On 32-bit we need a temporary when loading/storing a DFmode value + between unaligned memory and the upper FPU registers. */ + if (TARGET_ARCH32 + && rclass == EXTRA_FP_REGS + && mode == DFmode + && GET_CODE (x) == MEM + && ! mem_min_alignment (x, 8)) + return FP_REGS; + + if (((TARGET_CM_MEDANY + && symbolic_operand (x, mode)) + || (TARGET_CM_EMBMEDANY + && text_segment_operand (x, mode))) + && ! flag_pic) + { + if (in_p) + sri->icode = direct_optab_handler (reload_in_optab, mode); + else + sri->icode = direct_optab_handler (reload_out_optab, mode); + return NO_REGS; + } + + if (TARGET_VIS3 && TARGET_ARCH32) + { + int regno = true_regnum (x); + + /* When using VIS3 fp<-->int register moves, on 32-bit we have + to move 8-byte values in 4-byte pieces. This only works via + FP_REGS, and not via EXTRA_FP_REGS. Therefore if we try to + move between EXTRA_FP_REGS and GENERAL_REGS, we will need + an FP_REGS intermediate move. */ + if ((rclass == EXTRA_FP_REGS && SPARC_INT_REG_P (regno)) + || ((general_or_i64_p (rclass) + || rclass == GENERAL_OR_FP_REGS) + && SPARC_FP_REG_P (regno))) + { + sri->extra_cost = 2; + return FP_REGS; + } + } + + return NO_REGS; +} + +/* Implement TARGET_SECONDARY_MEMORY_NEEDED. + + On SPARC when not VIS3 it is not possible to directly move data + between GENERAL_REGS and FP_REGS. */ + +static bool +sparc_secondary_memory_needed (machine_mode mode, reg_class_t class1, + reg_class_t class2) +{ + return ((FP_REG_CLASS_P (class1) != FP_REG_CLASS_P (class2)) + && (! TARGET_VIS3 + || GET_MODE_SIZE (mode) > 8 + || GET_MODE_SIZE (mode) < 4)); +} + +/* Implement TARGET_SECONDARY_MEMORY_NEEDED_MODE. + + get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9 + because the movsi and movsf patterns don't handle r/f moves. + For v8 we copy the default definition. */ + +static machine_mode +sparc_secondary_memory_needed_mode (machine_mode mode) +{ + if (TARGET_ARCH64) + { + if (GET_MODE_BITSIZE (mode) < 32) + return mode_for_size (32, GET_MODE_CLASS (mode), 0).require (); + return mode; + } + else + { + if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD) + return mode_for_size (BITS_PER_WORD, + GET_MODE_CLASS (mode), 0).require (); + return mode; + } +} + +/* Emit code to conditionally move either OPERANDS[2] or OPERANDS[3] into + OPERANDS[0] in MODE. OPERANDS[1] is the operator of the condition. */ + +bool +sparc_expand_conditional_move (machine_mode mode, rtx *operands) +{ + enum rtx_code rc = GET_CODE (operands[1]); + machine_mode cmp_mode; + rtx cc_reg, dst, cmp; + + cmp = operands[1]; + if (GET_MODE (XEXP (cmp, 0)) == DImode && !TARGET_ARCH64) + return false; + + if (GET_MODE (XEXP (cmp, 0)) == TFmode && !TARGET_HARD_QUAD) + cmp = sparc_emit_float_lib_cmp (XEXP (cmp, 0), XEXP (cmp, 1), rc); + + cmp_mode = GET_MODE (XEXP (cmp, 0)); + rc = GET_CODE (cmp); + + dst = operands[0]; + if (! rtx_equal_p (operands[2], dst) + && ! rtx_equal_p (operands[3], dst)) + { + if (reg_overlap_mentioned_p (dst, cmp)) + dst = gen_reg_rtx (mode); + + emit_move_insn (dst, operands[3]); + } + else if (operands[2] == dst) + { + operands[2] = operands[3]; + + if (GET_MODE_CLASS (cmp_mode) == MODE_FLOAT) + rc = reverse_condition_maybe_unordered (rc); + else + rc = reverse_condition (rc); + } + + if (XEXP (cmp, 1) == const0_rtx + && GET_CODE (XEXP (cmp, 0)) == REG + && cmp_mode == DImode + && v9_regcmp_p (rc)) + cc_reg = XEXP (cmp, 0); + else + cc_reg = gen_compare_reg_1 (rc, XEXP (cmp, 0), XEXP (cmp, 1)); + + cmp = gen_rtx_fmt_ee (rc, GET_MODE (cc_reg), cc_reg, const0_rtx); + + emit_insn (gen_rtx_SET (dst, + gen_rtx_IF_THEN_ELSE (mode, cmp, operands[2], dst))); + + if (dst != operands[0]) + emit_move_insn (operands[0], dst); + + return true; +} + +/* Emit code to conditionally move a combination of OPERANDS[1] and OPERANDS[2] + into OPERANDS[0] in MODE, depending on the outcome of the comparison of + OPERANDS[4] and OPERANDS[5]. OPERANDS[3] is the operator of the condition. + FCODE is the machine code to be used for OPERANDS[3] and CCODE the machine + code to be used for the condition mask. */ + +void +sparc_expand_vcond (machine_mode mode, rtx *operands, int ccode, int fcode) +{ + rtx mask, cop0, cop1, fcmp, cmask, bshuf, gsr; + enum rtx_code code = GET_CODE (operands[3]); + + mask = gen_reg_rtx (Pmode); + cop0 = operands[4]; + cop1 = operands[5]; + if (code == LT || code == GE) + { + rtx t; + + code = swap_condition (code); + t = cop0; cop0 = cop1; cop1 = t; + } + + gsr = gen_rtx_REG (DImode, SPARC_GSR_REG); + + fcmp = gen_rtx_UNSPEC (Pmode, + gen_rtvec (1, gen_rtx_fmt_ee (code, mode, cop0, cop1)), + fcode); + + cmask = gen_rtx_UNSPEC (DImode, + gen_rtvec (2, mask, gsr), + ccode); + + bshuf = gen_rtx_UNSPEC (mode, + gen_rtvec (3, operands[1], operands[2], gsr), + UNSPEC_BSHUFFLE); + + emit_insn (gen_rtx_SET (mask, fcmp)); + emit_insn (gen_rtx_SET (gsr, cmask)); + + emit_insn (gen_rtx_SET (operands[0], bshuf)); +} + +/* On sparc, any mode which naturally allocates into the float + registers should return 4 here. */ + +unsigned int +sparc_regmode_natural_size (machine_mode mode) +{ + int size = UNITS_PER_WORD; + + if (TARGET_ARCH64) + { + enum mode_class mclass = GET_MODE_CLASS (mode); + + if (mclass == MODE_FLOAT || mclass == MODE_VECTOR_INT) + size = 4; + } + + return size; +} + +/* Implement TARGET_HARD_REGNO_NREGS. + + On SPARC, ordinary registers hold 32 bits worth; this means both + integer and floating point registers. On v9, integer regs hold 64 + bits worth; floating point regs hold 32 bits worth (this includes the + new fp regs as even the odd ones are included in the hard register + count). */ + +static unsigned int +sparc_hard_regno_nregs (unsigned int regno, machine_mode mode) +{ + if (regno == SPARC_GSR_REG) + return 1; + if (TARGET_ARCH64) + { + if (SPARC_INT_REG_P (regno) || regno == FRAME_POINTER_REGNUM) + return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD); + return CEIL (GET_MODE_SIZE (mode), 4); + } + return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD); +} + +/* Implement TARGET_HARD_REGNO_MODE_OK. + + ??? Because of the funny way we pass parameters we should allow certain + ??? types of float/complex values to be in integer registers during + ??? RTL generation. This only matters on arch32. */ + +static bool +sparc_hard_regno_mode_ok (unsigned int regno, machine_mode mode) +{ + return (hard_regno_mode_classes[regno] & sparc_mode_class[mode]) != 0; +} + +/* Implement TARGET_MODES_TIEABLE_P. + + For V9 we have to deal with the fact that only the lower 32 floating + point registers are 32-bit addressable. */ + +static bool +sparc_modes_tieable_p (machine_mode mode1, machine_mode mode2) +{ + enum mode_class mclass1, mclass2; + unsigned short size1, size2; + + if (mode1 == mode2) + return true; + + mclass1 = GET_MODE_CLASS (mode1); + mclass2 = GET_MODE_CLASS (mode2); + if (mclass1 != mclass2) + return false; + + if (! TARGET_V9) + return true; + + /* Classes are the same and we are V9 so we have to deal with upper + vs. lower floating point registers. If one of the modes is a + 4-byte mode, and the other is not, we have to mark them as not + tieable because only the lower 32 floating point register are + addressable 32-bits at a time. + + We can't just test explicitly for SFmode, otherwise we won't + cover the vector mode cases properly. */ + + if (mclass1 != MODE_FLOAT && mclass1 != MODE_VECTOR_INT) + return true; + + size1 = GET_MODE_SIZE (mode1); + size2 = GET_MODE_SIZE (mode2); + if ((size1 > 4 && size2 == 4) + || (size2 > 4 && size1 == 4)) + return false; + + return true; +} + +/* Implement TARGET_CSTORE_MODE. */ + +static scalar_int_mode +sparc_cstore_mode (enum insn_code icode ATTRIBUTE_UNUSED) +{ + return (TARGET_ARCH64 ? DImode : SImode); +} + +/* Return the compound expression made of T1 and T2. */ + +static inline tree +compound_expr (tree t1, tree t2) +{ + return build2 (COMPOUND_EXPR, void_type_node, t1, t2); +} + +/* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook. */ + +static void +sparc_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update) +{ + if (!TARGET_FPU) + return; + + const unsigned HOST_WIDE_INT accrued_exception_mask = 0x1f << 5; + const unsigned HOST_WIDE_INT trap_enable_mask = 0x1f << 23; + + /* We generate the equivalent of feholdexcept (&fenv_var): + + unsigned int fenv_var; + __builtin_store_fsr (&fenv_var); + + unsigned int tmp1_var; + tmp1_var = fenv_var & ~(accrued_exception_mask | trap_enable_mask); + + __builtin_load_fsr (&tmp1_var); */ + + tree fenv_var = create_tmp_var_raw (unsigned_type_node); + TREE_ADDRESSABLE (fenv_var) = 1; + tree fenv_addr = build_fold_addr_expr (fenv_var); + tree stfsr = sparc_builtins[SPARC_BUILTIN_STFSR]; + tree hold_stfsr + = build4 (TARGET_EXPR, unsigned_type_node, fenv_var, + build_call_expr (stfsr, 1, fenv_addr), NULL_TREE, NULL_TREE); + + tree tmp1_var = create_tmp_var_raw (unsigned_type_node); + TREE_ADDRESSABLE (tmp1_var) = 1; + tree masked_fenv_var + = build2 (BIT_AND_EXPR, unsigned_type_node, fenv_var, + build_int_cst (unsigned_type_node, + ~(accrued_exception_mask | trap_enable_mask))); + tree hold_mask + = build4 (TARGET_EXPR, unsigned_type_node, tmp1_var, masked_fenv_var, + NULL_TREE, NULL_TREE); + + tree tmp1_addr = build_fold_addr_expr (tmp1_var); + tree ldfsr = sparc_builtins[SPARC_BUILTIN_LDFSR]; + tree hold_ldfsr = build_call_expr (ldfsr, 1, tmp1_addr); + + *hold = compound_expr (compound_expr (hold_stfsr, hold_mask), hold_ldfsr); + + /* We reload the value of tmp1_var to clear the exceptions: + + __builtin_load_fsr (&tmp1_var); */ + + *clear = build_call_expr (ldfsr, 1, tmp1_addr); + + /* We generate the equivalent of feupdateenv (&fenv_var): + + unsigned int tmp2_var; + __builtin_store_fsr (&tmp2_var); + + __builtin_load_fsr (&fenv_var); + + if (SPARC_LOW_FE_EXCEPT_VALUES) + tmp2_var >>= 5; + __atomic_feraiseexcept ((int) tmp2_var); */ + + tree tmp2_var = create_tmp_var_raw (unsigned_type_node); + TREE_ADDRESSABLE (tmp2_var) = 1; + tree tmp2_addr = build_fold_addr_expr (tmp2_var); + tree update_stfsr + = build4 (TARGET_EXPR, unsigned_type_node, tmp2_var, + build_call_expr (stfsr, 1, tmp2_addr), NULL_TREE, NULL_TREE); + + tree update_ldfsr = build_call_expr (ldfsr, 1, fenv_addr); + + tree atomic_feraiseexcept + = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT); + tree update_call + = build_call_expr (atomic_feraiseexcept, 1, + fold_convert (integer_type_node, tmp2_var)); + + if (SPARC_LOW_FE_EXCEPT_VALUES) + { + tree shifted_tmp2_var + = build2 (RSHIFT_EXPR, unsigned_type_node, tmp2_var, + build_int_cst (unsigned_type_node, 5)); + tree update_shift + = build2 (MODIFY_EXPR, void_type_node, tmp2_var, shifted_tmp2_var); + update_call = compound_expr (update_shift, update_call); + } + + *update + = compound_expr (compound_expr (update_stfsr, update_ldfsr), update_call); +} + +/* Implement TARGET_CAN_CHANGE_MODE_CLASS. Borrowed from the PA port. + + SImode loads to floating-point registers are not zero-extended. + The definition for LOAD_EXTEND_OP specifies that integer loads + narrower than BITS_PER_WORD will be zero-extended. As a result, + we inhibit changes from SImode unless they are to a mode that is + identical in size. + + Likewise for SFmode, since word-mode paradoxical subregs are + problematic on big-endian architectures. */ + +static bool +sparc_can_change_mode_class (machine_mode from, machine_mode to, + reg_class_t rclass) +{ + if (TARGET_ARCH64 + && GET_MODE_SIZE (from) == 4 + && GET_MODE_SIZE (to) != 4) + return !reg_classes_intersect_p (rclass, FP_REGS); + return true; +} + +/* Implement TARGET_CONSTANT_ALIGNMENT. */ + +static HOST_WIDE_INT +sparc_constant_alignment (const_tree exp, HOST_WIDE_INT align) +{ + if (TREE_CODE (exp) == STRING_CST) + return MAX (align, FASTEST_ALIGNMENT); + return align; +} + +#include "gt-sparc.h" diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc.md gcc-10.3.0/gcc/config/sparc/sparc.md --- gcc-10.3.0.orig/gcc/config/sparc/sparc.md 2021-04-08 13:56:28.205742322 +0200 +++ gcc-10.3.0/gcc/config/sparc/sparc.md 2021-04-09 07:51:37.936504607 +0200 @@ -1601,7 +1601,10 @@ (clobber (reg:P O7_REG))] "REGNO (operands[0]) == INTVAL (operands[3])" { - return output_load_pcrel_sym (operands); + if (flag_delayed_branch) + return "sethi\t%%hi(%a1-4), %0\n\tcall\t%a2\n\t add\t%0, %%lo(%a1+4), %0"; + else + return "sethi\t%%hi(%a1-8), %0\n\tadd\t%0, %%lo(%a1-4), %0\n\tcall\t%a2\n\t nop"; } [(set (attr "type") (const_string "multi")) (set (attr "length") diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc.md.orig gcc-10.3.0/gcc/config/sparc/sparc.md.orig --- gcc-10.3.0.orig/gcc/config/sparc/sparc.md.orig 1970-01-01 01:00:00.000000000 +0100 +++ gcc-10.3.0/gcc/config/sparc/sparc.md.orig 2021-04-08 13:56:28.205742322 +0200 @@ -0,0 +1,9524 @@ +;; Machine description for SPARC. +;; Copyright (C) 1987-2020 Free Software Foundation, Inc. +;; Contributed by Michael Tiemann (tiemann@cygnus.com) +;; 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, +;; at Cygnus Support. + +;; This file is part of GCC. + +;; GCC is free software; you can redistribute it and/or modify +;; it under the terms of the GNU General Public License as published by +;; the Free Software Foundation; either version 3, or (at your option) +;; any later version. + +;; GCC is distributed in the hope that it will be useful, +;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +;; GNU General Public License for more details. + +;; You should have received a copy of the GNU General Public License +;; along with GCC; see the file COPYING3. If not see +;; . + +(define_c_enum "unspec" [ + UNSPEC_MOVE_PIC + UNSPEC_UPDATE_RETURN + UNSPEC_LOAD_PCREL_SYM + UNSPEC_FRAME_BLOCKAGE + UNSPEC_MOVE_PIC_LABEL + UNSPEC_SETH44 + UNSPEC_SETM44 + UNSPEC_SETHH + UNSPEC_SETLM + UNSPEC_EMB_HISUM + UNSPEC_EMB_TEXTUHI + UNSPEC_EMB_TEXTHI + UNSPEC_EMB_TEXTULO + UNSPEC_EMB_SETHM + UNSPEC_MOVE_GOTDATA + + UNSPEC_MEMBAR + UNSPEC_ATOMIC + + UNSPEC_TLSGD + UNSPEC_TLSLDM + UNSPEC_TLSLDO + UNSPEC_TLSIE + UNSPEC_TLSLE + UNSPEC_TLSLD_BASE + + UNSPEC_FPACK16 + UNSPEC_FPACK32 + UNSPEC_FPACKFIX + UNSPEC_FEXPAND + UNSPEC_MUL16AU + UNSPEC_MUL16AL + UNSPEC_MUL8UL + UNSPEC_MULDUL + UNSPEC_ALIGNDATA + UNSPEC_FCMP + UNSPEC_PDIST + UNSPEC_EDGE8 + UNSPEC_EDGE8L + UNSPEC_EDGE16 + UNSPEC_EDGE16L + UNSPEC_EDGE32 + UNSPEC_EDGE32L + UNSPEC_ARRAY8 + UNSPEC_ARRAY16 + UNSPEC_ARRAY32 + + UNSPEC_SP_SET + UNSPEC_SP_TEST + + UNSPEC_EDGE8N + UNSPEC_EDGE8LN + UNSPEC_EDGE16N + UNSPEC_EDGE16LN + UNSPEC_EDGE32N + UNSPEC_EDGE32LN + UNSPEC_BSHUFFLE + UNSPEC_CMASK8 + UNSPEC_CMASK16 + UNSPEC_CMASK32 + UNSPEC_FCHKSM16 + UNSPEC_PDISTN + UNSPEC_FUCMP + UNSPEC_FHADD + UNSPEC_FHSUB + UNSPEC_XMUL + UNSPEC_MUL8 + UNSPEC_MUL8SU + UNSPEC_MULDSU + + UNSPEC_ADDV + UNSPEC_SUBV + UNSPEC_NEGV + + UNSPEC_DICTUNPACK + UNSPEC_FPCMPSHL + UNSPEC_FPUCMPSHL + UNSPEC_FPCMPDESHL + UNSPEC_FPCMPURSHL +]) + +(define_c_enum "unspecv" [ + UNSPECV_BLOCKAGE + + UNSPECV_SPECULATION_BARRIER + + UNSPECV_PROBE_STACK_RANGE + + UNSPECV_FLUSHW + UNSPECV_SAVEW + + UNSPECV_FLUSH + + UNSPECV_LDSTUB + UNSPECV_SWAP + UNSPECV_CAS + + UNSPECV_LDFSR + UNSPECV_STFSR +]) + +(define_constants + [(G0_REG 0) + (G1_REG 1) + (G2_REG 2) + (G3_REG 3) + (G4_REG 4) + (G5_REG 5) + (G6_REG 6) + (G7_REG 7) + (O0_REG 8) + (O1_REG 9) + (O2_REG 10) + (O3_REG 11) + (O4_REG 12) + (O5_REG 13) + (O6_REG 14) + (O7_REG 15) + (L0_REG 16) + (L1_REG 17) + (L2_REG 18) + (L3_REG 19) + (L4_REG 20) + (L5_REG 21) + (L6_REG 22) + (L7_REG 23) + (I0_REG 24) + (I1_REG 25) + (I2_REG 26) + (I3_REG 27) + (I4_REG 28) + (I5_REG 29) + (I6_REG 30) + (I7_REG 31) + (F0_REG 32) + (F1_REG 33) + (F2_REG 34) + (F3_REG 35) + (F4_REG 36) + (F5_REG 37) + (F6_REG 38) + (F7_REG 39) + (F8_REG 40) + (F9_REG 41) + (F10_REG 42) + (F11_REG 43) + (F12_REG 44) + (F13_REG 45) + (F14_REG 46) + (F15_REG 47) + (F16_REG 48) + (F17_REG 49) + (F18_REG 50) + (F19_REG 51) + (F20_REG 52) + (F21_REG 53) + (F22_REG 54) + (F23_REG 55) + (F24_REG 56) + (F25_REG 57) + (F26_REG 58) + (F27_REG 59) + (F28_REG 60) + (F29_REG 61) + (F30_REG 62) + (F31_REG 63) + (F32_REG 64) + (F34_REG 66) + (F36_REG 68) + (F38_REG 70) + (F40_REG 72) + (F42_REG 74) + (F44_REG 76) + (F46_REG 78) + (F48_REG 80) + (F50_REG 82) + (F52_REG 84) + (F54_REG 86) + (F56_REG 88) + (F58_REG 90) + (F60_REG 92) + (F62_REG 94) + (FCC0_REG 96) + (FCC1_REG 97) + (FCC2_REG 98) + (FCC3_REG 99) + (CC_REG 100) + (SFP_REG 101) + (GSR_REG 102) + ]) + +(define_mode_iterator I [QI HI SI DI]) +(define_mode_iterator P [(SI "TARGET_ARCH32") (DI "TARGET_ARCH64")]) +(define_mode_iterator W [SI (DI "TARGET_ARCH64")]) +(define_mode_iterator F [SF DF TF]) + +;; The upper 32 fp regs on the v9 can't hold SFmode values. To deal with this +;; a second register class, EXTRA_FP_REGS, exists for the v9 chip. The name +;; is a bit of a misnomer as it covers all 64 fp regs. The corresponding +;; constraint letter is 'e'. To avoid any confusion, 'e' is used instead of +;; 'f' for all DF/TFmode values, including those that are specific to the v8. + +;; Attribute for cpu type. +;; These must match the values of enum sparc_processor_type in sparc-opts.h. +(define_attr "cpu" + "v7, + cypress, + v8, + supersparc, + hypersparc, + leon, + leon3, + leon3v7, + sparclite, + f930, + f934, + sparclite86x, + sparclet, + tsc701, + v9, + ultrasparc, + ultrasparc3, + niagara, + niagara2, + niagara3, + niagara4, + niagara7, + m8" + (const (symbol_ref "sparc_cpu_attr"))) + +;; Attribute for the instruction set. +;; At present we only need to distinguish v9/!v9, but for clarity we +;; test TARGET_V8 too. +(define_attr "isa" "v7,v8,v9,sparclet" + (const + (cond [(symbol_ref "TARGET_V9") (const_string "v9") + (symbol_ref "TARGET_V8") (const_string "v8") + (symbol_ref "TARGET_SPARCLET") (const_string "sparclet")] + (const_string "v7")))) + +(define_attr "cpu_feature" "none,fpu,fpunotv9,v9,vis,vis3,vis4,vis4b" + (const_string "none")) + +(define_attr "lra" "disabled,enabled" + (const_string "enabled")) + +(define_attr "enabled" "" + (cond [(eq_attr "cpu_feature" "none") + (cond [(eq_attr "lra" "disabled") (symbol_ref "!TARGET_LRA")] (const_int 1)) + (eq_attr "cpu_feature" "fpu") (symbol_ref "TARGET_FPU") + (eq_attr "cpu_feature" "fpunotv9") (symbol_ref "TARGET_FPU && !TARGET_V9") + (eq_attr "cpu_feature" "v9") (symbol_ref "TARGET_V9") + (eq_attr "cpu_feature" "vis") (symbol_ref "TARGET_VIS") + (eq_attr "cpu_feature" "vis3") (symbol_ref "TARGET_VIS3") + (eq_attr "cpu_feature" "vis4") (symbol_ref "TARGET_VIS4") + (eq_attr "cpu_feature" "vis4b") (symbol_ref "TARGET_VIS4B")] + (const_int 0))) + +;; The SPARC instructions used by the backend are organized into a +;; hierarchy using the insn attributes "type" and "subtype". +;; +;; The mnemonics used in the list below are the architectural names +;; used in the Oracle SPARC Architecture specs. A / character +;; separates the type from the subtype where appropriate. For +;; brevity, text enclosed in {} denotes alternatives, while text +;; enclosed in [] is optional. +;; +;; Please keep this list updated. It is of great help for keeping the +;; correctness and coherence of the DFA schedulers. +;; +;; ialu: +;; ialuX: ADD[X]C SUB[X]C +;; shift: SLL[X] SRL[X] SRA[X] +;; cmove: MOV{A,N,NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} +;; MOVF{A,N,U,G,UG,L,UL,LG,NE,E,UE,GE,UGE,LE,ULE,O} +;; MOVR{Z,LEZ,LZ,NZ,GZ,GEZ} +;; compare: ADDcc ADDCcc ANDcc ORcc SUBcc SUBCcc XORcc XNORcc +;; imul: MULX SMUL[cc] UMUL UMULXHI XMULX XMULXHI +;; idiv: UDIVX SDIVX +;; flush: FLUSH +;; load/regular: LD{UB,UH,UW} LDFSR +;; load/prefetch: PREFETCH +;; fpload: LDF LDDF LDQF +;; sload: LD{SB,SH,SW} +;; store: ST{B,H,W,X} STFSR +;; fpstore: STF STDF STQF +;; cbcond: CWB{NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} +;; CXB{NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} +;; uncond_branch: BA BPA JMPL +;; branch: B{NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} +;; BP{NE,E,G,LE,GE,L,GU,LEU,CC,CS,POS,NEG,VC,VS} +;; FB{U,G,UG,L,UL,LG,NE,BE,UE,GE,UGE,LE,ULE,O} +;; call: CALL +;; return: RESTORE RETURN +;; fpmove: FABS{s,d,q} FMOV{s,d,q} FNEG{s,d,q} +;; fpcmove: FMOV{S,D,Q}{icc,xcc,fcc} +;; fpcrmove: FMOVR{s,d,q}{Z,LEZ,LZ,NZ,GZ,GEZ} +;; fp: FADD{s,d,q} FSUB{s,d,q} FHSUB{s,d} FNHADD{s,d} FNADD{s,d} +;; FiTO{s,d,q} FsTO{i,x,d,q} FdTO{i,x,s,q} FxTO{d,s,q} FqTO{i,x,s,d} +;; fpcmp: FCMP{s,d,q} FCMPE{s,d,q} +;; fpmul: FMADD{s,d} FMSUB{s,d} FMUL{s,d,q} FNMADD{s,d} +;; FNMSUB{s,d} FNMUL{s,d} FNsMULd FsMULd +;; FdMULq +;; array: ARRAY{8,16,32} +;; bmask: BMASK +;; edge: EDGE{8,16,32}[L]cc +;; edgen: EDGE{8,16,32}[L]n +;; fpdivs: FDIV{s,q} +;; fpsqrts: FSQRT{s,q} +;; fpdivd: FDIVd +;; fpsqrtd: FSQRTd +;; lzd: LZCNT +;; fga/addsub64: FP{ADD,SUB}64 +;; fga/fpu: FCHKSM16 FEXPANd FMEAN16 FPMERGE +;; FS{LL,RA,RL}{16,32} +;; fga/maxmin: FP{MAX,MIN}[U]{8,16,32} +;; fga/cmask: CMASK{8,16,32} +;; fga/other: BSHUFFLE FALIGNDATAg FP{ADD,SUB}[S]{8,16,32} +;; FP{ADD,SUB}US{8,16} DICTUNPACK +;; gsr/reg: RDGSR WRGSR +;; gsr/alignaddr: ALIGNADDRESS[_LITTLE] +;; vismv/double: FSRC2d +;; vismv/single: MOVwTOs FSRC2s +;; vismv/movstouw: MOVsTOuw +;; vismv/movxtod: MOVxTOd +;; vismv/movdtox: MOVdTOx +;; visl/single: F{AND,NAND,NOR,OR,NOT1}s +;; F{AND,OR}NOT{1,2}s +;; FONEs F{ZERO,XNOR,XOR}s FNOT2s +;; visl/double: FONEd FZEROd FNOT1d F{OR,AND,XOR}d F{NOR,NAND,XNOR}d +;; F{OR,AND}NOT1d F{OR,AND}NOT2d +;; viscmp: FPCMP{LE,GT,NE,EQ}{8,16,32} FPCMPU{LE,GT,NE,EQ}{8,16,32} +;; FPCMP{LE,GT,EQ,NE}{8,16,32}SHL FPCMPU{LE,GT,EQ,NE}{8,16,32}SHL +;; FPCMPDE{8,16,32}SHL FPCMPUR{8,16,32}SHL +;; fgm_pack: FPACKFIX FPACK{8,16,32} +;; fgm_mul: FMUL8SUx16 FMUL8ULx16 FMUL8x16 FMUL8x16AL +;; FMUL8x16AU FMULD8SUx16 FMULD8ULx16 +;; pdist: PDIST +;; pdistn: PDISTN + +(define_attr "type" + "ialu,compare,shift, + load,sload,store, + uncond_branch,branch,call,sibcall,call_no_delay_slot,return, + cbcond,uncond_cbcond, + imul,idiv, + fpload,fpstore, + fp,fpmove, + fpcmove,fpcrmove, + fpcmp, + fpmul,fpdivs,fpdivd, + fpsqrts,fpsqrtd, + fga,visl,vismv,viscmp, + fgm_pack,fgm_mul,pdist,pdistn,edge,edgen,gsr,array,bmask, + cmove, + ialuX, + multi,savew,flushw,iflush,trap,lzd" + (const_string "ialu")) + +(define_attr "subtype" + "single,double,movstouw,movxtod,movdtox, + addsub64,cmask,fpu,maxmin,other, + reg,alignaddr, + prefetch,regular" + (const_string "single")) + +;; True if branch/call has empty delay slot and will emit a nop in it +(define_attr "empty_delay_slot" "false,true" + (symbol_ref "(empty_delay_slot (insn) + ? EMPTY_DELAY_SLOT_TRUE : EMPTY_DELAY_SLOT_FALSE)")) + +;; True if we are making use of compare-and-branch instructions. +;; True if we should emit a nop after a cbcond instruction +(define_attr "emit_cbcond_nop" "false,true" + (symbol_ref "(emit_cbcond_nop (insn) + ? EMIT_CBCOND_NOP_TRUE : EMIT_CBCOND_NOP_FALSE)")) + +(define_attr "branch_type" "none,icc,fcc,reg" + (const_string "none")) + +(define_attr "pic" "false,true" + (symbol_ref "(flag_pic != 0 + ? PIC_TRUE : PIC_FALSE)")) + +(define_attr "calls_alloca" "false,true" + (symbol_ref "(cfun->calls_alloca != 0 + ? CALLS_ALLOCA_TRUE : CALLS_ALLOCA_FALSE)")) + +(define_attr "calls_eh_return" "false,true" + (symbol_ref "(crtl->calls_eh_return != 0 + ? CALLS_EH_RETURN_TRUE : CALLS_EH_RETURN_FALSE)")) + +(define_attr "leaf_function" "false,true" + (symbol_ref "(crtl->uses_only_leaf_regs != 0 + ? LEAF_FUNCTION_TRUE : LEAF_FUNCTION_FALSE)")) + +(define_attr "delayed_branch" "false,true" + (symbol_ref "(flag_delayed_branch != 0 + ? DELAYED_BRANCH_TRUE : DELAYED_BRANCH_FALSE)")) + +(define_attr "flat" "false,true" + (symbol_ref "(TARGET_FLAT != 0 + ? FLAT_TRUE : FLAT_FALSE)")) + +(define_attr "fix_ut699" "false,true" + (symbol_ref "(sparc_fix_ut699 != 0 + ? FIX_UT699_TRUE : FIX_UT699_FALSE)")) + +(define_attr "fix_b2bst" "false,true" + (symbol_ref "(sparc_fix_b2bst != 0 + ? FIX_B2BST_TRUE : FIX_B2BST_FALSE)")) + +(define_attr "fix_lost_divsqrt" "false,true" + (symbol_ref "(sparc_fix_lost_divsqrt != 0 + ? FIX_LOST_DIVSQRT_TRUE : FIX_LOST_DIVSQRT_FALSE)")) + +(define_attr "fix_gr712rc" "false,true" + (symbol_ref "(sparc_fix_gr712rc != 0 + ? FIX_GR712RC_TRUE : FIX_GR712RC_FALSE)")) + +;; Length (in # of insns). +;; Beware that setting a length greater or equal to 3 for conditional branches +;; has a side-effect (see output_cbranch and output_v9branch). +(define_attr "length" "" + (cond [(eq_attr "type" "uncond_branch,call") + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1)) + (eq_attr "type" "sibcall") + (if_then_else (ior (eq_attr "leaf_function" "true") + (eq_attr "flat" "true")) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 3) + (const_int 2)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1))) + (eq_attr "branch_type" "icc") + (if_then_else (match_operand 0 "v9_comparison_operator" "") + (if_then_else (lt (pc) (match_dup 1)) + (if_then_else (lt (minus (match_dup 1) (pc)) (const_int 260000)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 4) + (const_int 3))) + (if_then_else (lt (minus (pc) (match_dup 1)) (const_int 260000)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 4) + (const_int 3)))) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1))) + (eq_attr "branch_type" "fcc") + (if_then_else (match_operand 0 "fcc0_register_operand" "") + (if_then_else (eq_attr "empty_delay_slot" "true") + (if_then_else (not (match_test "TARGET_V9")) + (const_int 3) + (const_int 2)) + (if_then_else (not (match_test "TARGET_V9")) + (const_int 2) + (const_int 1))) + (if_then_else (lt (pc) (match_dup 2)) + (if_then_else (lt (minus (match_dup 2) (pc)) (const_int 260000)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 4) + (const_int 3))) + (if_then_else (lt (minus (pc) (match_dup 2)) (const_int 260000)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 4) + (const_int 3))))) + (eq_attr "branch_type" "reg") + (if_then_else (lt (pc) (match_dup 2)) + (if_then_else (lt (minus (match_dup 2) (pc)) (const_int 32000)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 4) + (const_int 3))) + (if_then_else (lt (minus (pc) (match_dup 2)) (const_int 32000)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1)) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 4) + (const_int 3)))) + (eq_attr "type" "cbcond") + (if_then_else (lt (pc) (match_dup 3)) + (if_then_else (lt (minus (match_dup 3) (pc)) (const_int 500)) + (if_then_else (eq_attr "emit_cbcond_nop" "true") + (const_int 2) + (const_int 1)) + (const_int 4)) + (if_then_else (lt (minus (pc) (match_dup 3)) (const_int 500)) + (if_then_else (eq_attr "emit_cbcond_nop" "true") + (const_int 2) + (const_int 1)) + (const_int 4))) + (eq_attr "type" "uncond_cbcond") + (if_then_else (lt (pc) (match_dup 0)) + (if_then_else (lt (minus (match_dup 0) (pc)) (const_int 500)) + (if_then_else (eq_attr "emit_cbcond_nop" "true") + (const_int 2) + (const_int 1)) + (const_int 1)) + (if_then_else (lt (minus (pc) (match_dup 0)) (const_int 500)) + (if_then_else (eq_attr "emit_cbcond_nop" "true") + (const_int 2) + (const_int 1)) + (const_int 1))) + ] (const_int 1))) + +;; FP precision. +(define_attr "fptype" "single,double" + (const_string "single")) + +;; FP precision specific to the UT699. +(define_attr "fptype_ut699" "none,single" + (const_string "none")) + +;; UltraSPARC-III integer load type. +(define_attr "us3load_type" "2cycle,3cycle" + (const_string "2cycle")) + +(define_asm_attributes + [(set_attr "length" "2") + (set_attr "type" "multi")]) + +;; Attributes for branch scheduling +(define_attr "tls_delay_slot" "false,true" + (symbol_ref "((TARGET_GNU_TLS && HAVE_GNU_LD) != 0 + ? TLS_DELAY_SLOT_TRUE : TLS_DELAY_SLOT_FALSE)")) + +(define_attr "in_sibcall_delay" "false,true" + (symbol_ref "(eligible_for_sibcall_delay (insn) + ? IN_SIBCALL_DELAY_TRUE : IN_SIBCALL_DELAY_FALSE)")) + +(define_attr "in_return_delay" "false,true" + (symbol_ref "(eligible_for_return_delay (insn) + ? IN_RETURN_DELAY_TRUE : IN_RETURN_DELAY_FALSE)")) + +;; ??? !v9: Should implement the notion of predelay slots for floating-point +;; branches. This would allow us to remove the nop always inserted before +;; a floating point branch. + +;; ??? It is OK for fill_simple_delay_slots to put load/store instructions +;; in a delay slot, but it is not OK for fill_eager_delay_slots to do so. +;; This is because doing so will add several pipeline stalls to the path +;; that the load/store did not come from. Unfortunately, there is no way +;; to prevent fill_eager_delay_slots from using load/store without completely +;; disabling them. For the SPEC benchmark set, this is a serious lose, +;; because it prevents us from moving back the final store of inner loops. + +(define_attr "in_branch_delay" "false,true" + (cond [(eq_attr "type" "uncond_branch,branch,cbcond,uncond_cbcond,call,sibcall,call_no_delay_slot,multi") + (const_string "false") + (and (eq_attr "fix_lost_divsqrt" "true") + (eq_attr "type" "fpdivs,fpsqrts,fpdivd,fpsqrtd")) + (const_string "false") + (and (eq_attr "fix_b2bst" "true") (eq_attr "type" "store,fpstore")) + (const_string "false") + (and (eq_attr "fix_ut699" "true") (eq_attr "type" "load,sload")) + (const_string "false") + (and (eq_attr "fix_ut699" "true") + (and (eq_attr "type" "fpload,fp,fpmove,fpmul,fpdivs,fpsqrts") + (ior (eq_attr "fptype" "single") + (eq_attr "fptype_ut699" "single")))) + (const_string "false") + (eq_attr "length" "1") + (const_string "true") + ] (const_string "false"))) + +(define_attr "in_integer_branch_annul_delay" "false,true" + (cond [(and (eq_attr "fix_gr712rc" "true") + (eq_attr "type" "fp,fpcmp,fpmove,fpcmove,fpmul, + fpdivs,fpsqrts,fpdivd,fpsqrtd")) + (const_string "false") + (eq_attr "in_branch_delay" "true") + (const_string "true") + ] (const_string "false"))) + +(define_delay (eq_attr "type" "sibcall") + [(eq_attr "in_sibcall_delay" "true") (nil) (nil)]) + +(define_delay (eq_attr "type" "return") + [(eq_attr "in_return_delay" "true") (nil) (nil)]) + +(define_delay (ior (eq_attr "type" "call") (eq_attr "type" "uncond_branch")) + [(eq_attr "in_branch_delay" "true") (nil) (nil)]) + +(define_delay (and (eq_attr "type" "branch") (not (eq_attr "branch_type" "icc"))) + [(eq_attr "in_branch_delay" "true") + (nil) + (eq_attr "in_branch_delay" "true")]) + +(define_delay (and (eq_attr "type" "branch") (eq_attr "branch_type" "icc")) + [(eq_attr "in_branch_delay" "true") + (nil) + (eq_attr "in_integer_branch_annul_delay" "true")]) + +;; Include SPARC DFA schedulers + +(include "cypress.md") +(include "supersparc.md") +(include "hypersparc.md") +(include "leon.md") +(include "sparclet.md") +(include "ultra1_2.md") +(include "ultra3.md") +(include "niagara.md") +(include "niagara2.md") +(include "niagara4.md") +(include "niagara7.md") +(include "m8.md") + + +;; Operand and operator predicates and constraints + +(include "predicates.md") +(include "constraints.md") + + +;; Compare instructions. + +;; These are just the DEFINE_INSNs to match the patterns and the +;; DEFINE_SPLITs for some of the scc insns that actually require +;; more than one machine instruction. DEFINE_EXPANDs are further down. + +(define_insn "*cmpsi_insn" + [(set (reg:CC CC_REG) + (compare:CC (match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "arith_operand" "rI")))] + "" + "cmp\t%0, %1" + [(set_attr "type" "compare")]) + +(define_insn "*cmpdi_sp64" + [(set (reg:CCX CC_REG) + (compare:CCX (match_operand:DI 0 "register_operand" "r") + (match_operand:DI 1 "arith_operand" "rI")))] + "TARGET_ARCH64" + "cmp\t%0, %1" + [(set_attr "type" "compare")]) + +(define_insn "*cmpsi_sne" + [(set (reg:CCC CC_REG) + (compare:CCC (not:SI (match_operand:SI 0 "arith_operand" "rI")) + (const_int -1)))] + "" + "cmp\t%%g0, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmpdi_sne" + [(set (reg:CCXC CC_REG) + (compare:CCXC (not:DI (match_operand:DI 0 "arith_operand" "rI")) + (const_int -1)))] + "TARGET_ARCH64" + "cmp\t%%g0, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmpsf_fpe" + [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") + (compare:CCFPE (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")))] + "TARGET_FPU" +{ + if (TARGET_V9) + return "fcmpes\t%0, %1, %2"; + return "fcmpes\t%1, %2"; +} + [(set_attr "type" "fpcmp")]) + +(define_insn "*cmpdf_fpe" + [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") + (compare:CCFPE (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_FPU" +{ + if (TARGET_V9) + return "fcmped\t%0, %1, %2"; + return "fcmped\t%1, %2"; +} + [(set_attr "type" "fpcmp") + (set_attr "fptype" "double")]) + +(define_insn "*cmptf_fpe" + [(set (match_operand:CCFPE 0 "fcc_register_operand" "=c") + (compare:CCFPE (match_operand:TF 1 "register_operand" "e") + (match_operand:TF 2 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" +{ + if (TARGET_V9) + return "fcmpeq\t%0, %1, %2"; + return "fcmpeq\t%1, %2"; +} + [(set_attr "type" "fpcmp")]) + +(define_insn "*cmpsf_fp" + [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") + (compare:CCFP (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")))] + "TARGET_FPU" +{ + if (TARGET_V9) + return "fcmps\t%0, %1, %2"; + return "fcmps\t%1, %2"; +} + [(set_attr "type" "fpcmp")]) + +(define_insn "*cmpdf_fp" + [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") + (compare:CCFP (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_FPU" +{ + if (TARGET_V9) + return "fcmpd\t%0, %1, %2"; + return "fcmpd\t%1, %2"; +} + [(set_attr "type" "fpcmp") + (set_attr "fptype" "double")]) + +(define_insn "*cmptf_fp" + [(set (match_operand:CCFP 0 "fcc_register_operand" "=c") + (compare:CCFP (match_operand:TF 1 "register_operand" "e") + (match_operand:TF 2 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" +{ + if (TARGET_V9) + return "fcmpq\t%0, %1, %2"; + return "fcmpq\t%1, %2"; +} + [(set_attr "type" "fpcmp")]) + +;; Next come the scc insns. + +;; Note that the boolean result (operand 0) takes on DImode +;; (not SImode) when TARGET_ARCH64. + +(define_expand "cstoresi4" + [(use (match_operator 1 "comparison_operator" + [(match_operand:SI 2 "compare_operand" "") + (match_operand:SI 3 "arith_operand" "")])) + (clobber (match_operand:SI 0 "cstore_result_operand"))] + "" +{ + if (GET_CODE (operands[2]) == ZERO_EXTRACT && operands[3] != const0_rtx) + operands[2] = force_reg (SImode, operands[2]); + if (emit_scc_insn (operands)) DONE; else FAIL; +}) + +(define_expand "cstoredi4" + [(use (match_operator 1 "comparison_operator" + [(match_operand:DI 2 "compare_operand" "") + (match_operand:DI 3 "arith_operand" "")])) + (clobber (match_operand:SI 0 "cstore_result_operand"))] + "TARGET_ARCH64" +{ + if (GET_CODE (operands[2]) == ZERO_EXTRACT && operands[3] != const0_rtx) + operands[2] = force_reg (DImode, operands[2]); + if (emit_scc_insn (operands)) DONE; else FAIL; +}) + +(define_expand "cstore4" + [(use (match_operator 1 "comparison_operator" + [(match_operand:F 2 "register_operand" "") + (match_operand:F 3 "register_operand" "")])) + (clobber (match_operand:SI 0 "cstore_result_operand"))] + "TARGET_FPU" +{ + if (emit_scc_insn (operands)) DONE; else FAIL; +}) + +;; The SNE and SEQ patterns are special because they can be done +;; without any branching and do not involve a COMPARE. + +(define_insn_and_split "*snesi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (ne:W (match_operand:SI 1 "register_operand" "r") + (const_int 0))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (ltu:W (reg:CCC CC_REG) (const_int 0)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*neg_snesi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (neg:W (ne:W (match_operand:SI 1 "register_operand" "r") + (const_int 0)))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (neg:W (ltu:W (reg:CCC CC_REG) (const_int 0))))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*snedi_zero" + [(set (match_operand:W 0 "register_operand" "=&r") + (ne:W (match_operand:DI 1 "register_operand" "r") + (const_int 0)))] + "TARGET_ARCH64 && !TARGET_VIS3" + "#" + "&& !reg_overlap_mentioned_p (operands[1], operands[0])" + [(set (match_dup 0) (const_int 0)) + (set (match_dup 0) (if_then_else:W (ne:DI (match_dup 1) (const_int 0)) + (const_int 1) + (match_dup 0)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*snedi_zero_vis3" + [(set (match_operand:W 0 "register_operand" "=r") + (ne:W (match_operand:DI 1 "register_operand" "r") + (const_int 0))) + (clobber (reg:CCX CC_REG))] + "TARGET_ARCH64 && TARGET_VIS3" + "#" + "" + [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (ltu:W (reg:CCXC CC_REG) (const_int 0)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*neg_snedi_zero" + [(set (match_operand:W 0 "register_operand" "=&r") + (neg:W (ne:W (match_operand:DI 1 "register_operand" "r") + (const_int 0))))] + "TARGET_ARCH64 && !TARGET_SUBXC" + "#" + "&& !reg_overlap_mentioned_p (operands[1], operands[0])" + [(set (match_dup 0) (const_int 0)) + (set (match_dup 0) (if_then_else:W (ne:DI (match_dup 1) (const_int 0)) + (const_int -1) + (match_dup 0)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*neg_snedi_zero_subxc" + [(set (match_operand:W 0 "register_operand" "=&r") + (neg:W (ne:W (match_operand:DI 1 "register_operand" "r") + (const_int 0)))) + (clobber (reg:CCX CC_REG))] + "TARGET_ARCH64 && TARGET_SUBXC" + "#" + "" + [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (neg:W (ltu:W (reg:CCXC CC_REG) (const_int 0))))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*seqsi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (eq:W (match_operand:SI 1 "register_operand" "r") + (const_int 0))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (geu:W (reg:CCC CC_REG) (const_int 0)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*neg_seqsi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (neg:W (eq:W (match_operand:SI 1 "register_operand" "r") + (const_int 0)))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (neg:W (geu:W (reg:CCC CC_REG) (const_int 0))))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*seqdi_zero" + [(set (match_operand:W 0 "register_operand" "=&r") + (eq:W (match_operand:DI 1 "register_operand" "r") + (const_int 0)))] + "TARGET_ARCH64" + "#" + "&& !reg_overlap_mentioned_p (operands[1], operands[0])" + [(set (match_dup 0) (const_int 0)) + (set (match_dup 0) (if_then_else:W (eq:DI (match_dup 1) (const_int 0)) + (const_int 1) + (match_dup 0)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*neg_seqdi_zero" + [(set (match_operand:W 0 "register_operand" "=&r") + (neg:W (eq:W (match_operand:DI 1 "register_operand" "r") + (const_int 0))))] + "TARGET_ARCH64" + "#" + "&& !reg_overlap_mentioned_p (operands[1], operands[0])" + [(set (match_dup 0) (const_int 0)) + (set (match_dup 0) (if_then_else:W (eq:DI (match_dup 1) (const_int 0)) + (const_int -1) + (match_dup 0)))] + "" + [(set_attr "length" "2")]) + +;; We can also do (x + (i == 0)) and related, so put them in. + +(define_insn_and_split "*plus_snesi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (ne:W (match_operand:SI 1 "register_operand" "r") + (const_int 0)) + (match_operand:W 2 "register_operand" "r"))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (plus:W (ltu:W (reg:CCC CC_REG) (const_int 0)) + (match_dup 2)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*plus_plus_snesi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (plus:W (ne:W (match_operand:SI 1 "register_operand" "r") + (const_int 0)) + (match_operand:W 2 "register_operand" "r")) + (match_operand:W 3 "register_operand" "r"))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (plus:W (plus:W (ltu:W (reg:CCC CC_REG) (const_int 0)) + (match_dup 2)) + (match_dup 3)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*plus_snedi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (ne:W (match_operand:DI 1 "register_operand" "r") + (const_int 0)) + (match_operand:W 2 "register_operand" "r"))) + (clobber (reg:CCX CC_REG))] + "TARGET_ARCH64 && TARGET_VIS3" + "#" + "" + [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (plus:W (ltu:W (reg:CCXC CC_REG) (const_int 0)) + (match_dup 2)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*plus_plus_snedi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (plus:W (ne:W (match_operand:DI 1 "register_operand" "r") + (const_int 0)) + (match_operand:W 2 "register_operand" "r")) + (match_operand:W 3 "register_operand" "r"))) + (clobber (reg:CCX CC_REG))] + "TARGET_ARCH64 && TARGET_VIS3" + "#" + "" + [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (plus:W (plus:W (ltu:W (reg:CCXC CC_REG) (const_int 0)) + (match_dup 2)) + (match_dup 3)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*minus_snesi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (match_operand:W 2 "register_operand" "r") + (ne:W (match_operand:SI 1 "register_operand" "r") + (const_int 0)))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (minus:W (match_dup 2) + (ltu:W (reg:CCC CC_REG) (const_int 0))))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*minus_minus_snesi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (minus:W (match_operand:W 2 "register_operand" "r") + (ne:W (match_operand:SI 1 "register_operand" "r") + (const_int 0))) + (match_operand:W 3 "register_operand" "r"))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (minus:W (minus:W (match_dup 2) + (ltu:W (reg:CCC CC_REG) (const_int 0))) + (match_dup 3)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*minus_snedi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (match_operand:W 2 "register_operand" "r") + (ne:W (match_operand:DI 1 "register_operand" "r") + (const_int 0)))) + (clobber (reg:CCX CC_REG))] + "TARGET_ARCH64 && TARGET_SUBXC" + "#" + "" + [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (minus:W (match_dup 2) + (ltu:W (reg:CCXC CC_REG) (const_int 0))))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*minus_minus_snedi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (minus:W (match_operand:W 2 "register_operand" "r") + (ne:W (match_operand:DI 1 "register_operand" "r") + (const_int 0))) + (match_operand:W 3 "register_operand" "r"))) + (clobber (reg:CCX CC_REG))] + "TARGET_ARCH64 && TARGET_SUBXC" + "#" + "" + [(set (reg:CCXC CC_REG) (compare:CCXC (not:DI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (minus:W (minus:W (match_dup 2) + (ltu:W (reg:CCXC CC_REG) (const_int 0))) + (match_dup 3)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*plus_seqsi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (eq:W (match_operand:SI 1 "register_operand" "r") + (const_int 0)) + (match_operand:W 2 "register_operand" "r"))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (plus:W (geu:W (reg:CCC CC_REG) (const_int 0)) + (match_dup 2)))] + "" + [(set_attr "length" "2")]) + +(define_insn_and_split "*minus_seqsi_zero" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (match_operand:W 2 "register_operand" "r") + (eq:W (match_operand:SI 1 "register_operand" "r") + (const_int 0)))) + (clobber (reg:CC CC_REG))] + "" + "#" + "" + [(set (reg:CCC CC_REG) (compare:CCC (not:SI (match_dup 1)) (const_int -1))) + (set (match_dup 0) (minus:W (match_dup 2) + (geu:W (reg:CCC CC_REG) (const_int 0))))] + "" + [(set_attr "length" "2")]) + +;; We can also do GEU and LTU directly, but these operate after a compare. + +(define_insn "*sltu_insn" + [(set (match_operand:W 0 "register_operand" "=r") + (ltu:W (match_operand 1 "icc_register_operand" "X") (const_int 0)))] + "GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode" + "addx\t%%g0, 0, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*plus_sltu" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (ltu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0)) + (match_operand:W 1 "arith_operand" "rI")))] + "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" + "addx\t%%g0, %1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*plus_plus_sltu" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (plus:W (ltu:W (match_operand 3 "icc_register_operand" "X") + (const_int 0)) + (match_operand:W 1 "register_operand" "%r")) + (match_operand:W 2 "arith_operand" "rI")))] + "GET_MODE (operands[3]) == CCmode || GET_MODE (operands[3]) == CCCmode" + "addx\t%1, %2, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*neg_sgeu" + [(set (match_operand:W 0 "register_operand" "=r") + (neg:W (geu:W (match_operand 1 "icc_register_operand" "X") + (const_int 0))))] + "GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode" + "addx\t%%g0, -1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*neg_sgeusidi" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extend:DI (neg:SI (geu:SI (match_operand 1 "icc_register_operand" "X") + (const_int 0)))))] + "TARGET_ARCH64 + && (GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode)" + "addx\t%%g0, -1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*minus_sgeu" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (match_operand:W 1 "register_operand" "r") + (geu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0))))] + "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" + "addx\t%1, -1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*addx" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (plus:W (match_operand:W 1 "register_operand" "%r") + (match_operand:W 2 "arith_operand" "rI")) + (ltu:W (match_operand 3 "icc_register_operand" "X") + (const_int 0))))] + "GET_MODE (operands[3]) == CCmode || GET_MODE (operands[3]) == CCCmode" + "addx\t%1, %2, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*sltu_insn_vis3" + [(set (match_operand:W 0 "register_operand" "=r") + (ltu:W (match_operand 1 "icc_register_operand" "X") (const_int 0)))] + "TARGET_ARCH64 && TARGET_VIS3 + && (GET_MODE (operands[1]) == CCXmode || GET_MODE (operands[1]) == CCXCmode)" + "addxc\t%%g0, %%g0, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*plus_sltu_vis3" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (ltu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0)) + (match_operand:W 1 "register_operand" "r")))] + "TARGET_ARCH64 && TARGET_VIS3 + && (GET_MODE (operands[2]) == CCXmode || GET_MODE (operands[2]) == CCXCmode)" + "addxc\t%%g0, %1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*plus_plus_sltu_vis3" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (plus:W (ltu:W (match_operand 3 "icc_register_operand" "X") + (const_int 0)) + (match_operand:W 1 "register_operand" "%r")) + (match_operand:W 2 "register_operand" "r")))] + "TARGET_ARCH64 && TARGET_VIS3 + && (GET_MODE (operands[3]) == CCXmode || GET_MODE (operands[3]) == CCXCmode)" + "addxc\t%1, %2, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*addxc" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (plus:W (match_operand:W 1 "register_operand" "%r") + (match_operand:W 2 "register_operand" "r")) + (ltu:W (match_operand 3 "icc_register_operand" "X") + (const_int 0))))] + "TARGET_ARCH64 && TARGET_VIS3 + && (GET_MODE (operands[3]) == CCXmode || GET_MODE (operands[3]) == CCXCmode)" + "addxc\t%1, %2, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*neg_sltu" + [(set (match_operand:W 0 "register_operand" "=r") + (neg:W (ltu:W (match_operand 1 "icc_register_operand" "X") + (const_int 0))))] + "GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode" + "subx\t%%g0, 0, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*neg_sltusidi" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extend:DI (neg:SI (ltu:SI (match_operand 1 "icc_register_operand" "X") + (const_int 0)))))] + "TARGET_ARCH64 + && (GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode)" + "subx\t%%g0, 0, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*minus_neg_sltu" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (neg:W (ltu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0))) + (match_operand:W 1 "arith_operand" "rI")))] + "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" + "subx\t%%g0, %1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*neg_plus_sltu" + [(set (match_operand:W 0 "register_operand" "=r") + (neg:W (plus:W (ltu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0)) + (match_operand:W 1 "arith_operand" "rI"))))] + "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" + "subx\t%%g0, %1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*minus_sltu" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (match_operand:W 1 "register_operand" "r") + (ltu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0))))] + "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" + "subx\t%1, 0, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*minus_minus_sltu" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (minus:W (match_operand:W 1 "register_or_zero_operand" "rJ") + (ltu:W (match_operand 3 "icc_register_operand" "X") + (const_int 0))) + (match_operand:W 2 "arith_operand" "rI")))] + "GET_MODE (operands[3]) == CCmode || GET_MODE (operands[3]) == CCCmode" + "subx\t%r1, %2, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*sgeu_insn" + [(set (match_operand:W 0 "register_operand" "=r") + (geu:W (match_operand 1 "icc_register_operand" "X") (const_int 0)))] + "GET_MODE (operands[1]) == CCmode || GET_MODE (operands[1]) == CCCmode" + "subx\t%%g0, -1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*plus_sgeu" + [(set (match_operand:W 0 "register_operand" "=r") + (plus:W (geu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0)) + (match_operand:W 1 "register_operand" "r")))] + "GET_MODE (operands[2]) == CCmode || GET_MODE (operands[2]) == CCCmode" + "subx\t%1, -1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*subx" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (minus:W (match_operand:W 1 "register_or_zero_operand" "rJ") + (match_operand:W 2 "arith_operand" "rI")) + (ltu:W (match_operand 3 "icc_register_operand" "X") + (const_int 0))))] + "GET_MODE (operands[3]) == CCmode || GET_MODE (operands[3]) == CCCmode" + "subx\t%r1, %2, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*neg_sltu_subxc" + [(set (match_operand:W 0 "register_operand" "=r") + (neg:W (ltu:W (match_operand 1 "icc_register_operand" "X") + (const_int 0))))] + "TARGET_ARCH64 && TARGET_SUBXC + && (GET_MODE (operands[1]) == CCXmode || GET_MODE (operands[1]) == CCXCmode)" + "subxc\t%%g0, %%g0, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*minus_neg_sltu_subxc" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (neg:W (ltu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0))) + (match_operand:W 1 "register_operand" "r")))] + "TARGET_ARCH64 && TARGET_SUBXC + && (GET_MODE (operands[2]) == CCXmode || GET_MODE (operands[2]) == CCXCmode)" + "subxc\t%%g0, %1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*neg_plus_sltu_subxc" + [(set (match_operand:W 0 "register_operand" "=r") + (neg:W (plus:W (ltu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0)) + (match_operand:W 1 "register_operand" "r"))))] + "TARGET_ARCH64 && TARGET_SUBXC + && (GET_MODE (operands[2]) == CCXmode || GET_MODE (operands[2]) == CCXCmode)" + "subxc\t%%g0, %1, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*minus_sltu_subxc" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (match_operand:W 1 "register_operand" "r") + (ltu:W (match_operand 2 "icc_register_operand" "X") + (const_int 0))))] + "TARGET_ARCH64 && TARGET_SUBXC + && (GET_MODE (operands[2]) == CCXmode || GET_MODE (operands[2]) == CCXCmode)" + "subxc\t%1, %%g0, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*minus_minus_sltu_subxc" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (minus:W (match_operand:W 1 "register_or_zero_operand" "rJ") + (ltu:W (match_operand 3 "icc_register_operand" "X") + (const_int 0))) + (match_operand:W 2 "register_operand" "r")))] + "TARGET_ARCH64 && TARGET_SUBXC + && (GET_MODE (operands[3]) == CCXmode || GET_MODE (operands[3]) == CCXCmode)" + "subxc\t%r1, %2, %0" + [(set_attr "type" "ialuX")]) + +(define_insn "*subxc" + [(set (match_operand:W 0 "register_operand" "=r") + (minus:W (minus:W (match_operand:W 1 "register_or_zero_operand" "rJ") + (match_operand:W 2 "register_operand" "r")) + (ltu:W (match_operand 3 "icc_register_operand" "X") + (const_int 0))))] + "TARGET_ARCH64 && TARGET_SUBXC + && (GET_MODE (operands[3]) == CCXmode || GET_MODE (operands[3]) == CCXCmode)" + "subxc\t%r1, %2, %0" + [(set_attr "type" "ialuX")]) + +(define_split + [(set (match_operand:W 0 "register_operand" "") + (match_operator:W 1 "icc_comparison_operator" + [(match_operand 2 "icc_register_operand" "") (const_int 0)]))] + "TARGET_V9 + /* 64-bit LTU is better implemented using addxc with VIS3. */ + && !(GET_CODE (operands[1]) == LTU + && (GET_MODE (operands[2]) == CCXmode + || GET_MODE (operands[2]) == CCXCmode) + && TARGET_VIS3) + /* 32-bit LTU/GEU are better implemented using addx/subx. */ + && !((GET_CODE (operands[1]) == LTU || GET_CODE (operands[1]) == GEU) + && (GET_MODE (operands[2]) == CCmode + || GET_MODE (operands[2]) == CCCmode))" + [(set (match_dup 0) (const_int 0)) + (set (match_dup 0) + (if_then_else:SI (match_op_dup:W 1 [(match_dup 2) (const_int 0)]) + (const_int 1) + (match_dup 0)))] + "") + +;; These control RTL generation for conditional jump insns + +(define_expand "cbranchcc4" + [(set (pc) + (if_then_else (match_operator 0 "comparison_operator" + [(match_operand 1 "compare_operand" "") + (match_operand 2 "const_zero_operand" "")]) + (label_ref (match_operand 3 "" "")) + (pc)))] + "" + "") + +(define_expand "cbranchsi4" + [(use (match_operator 0 "comparison_operator" + [(match_operand:SI 1 "compare_operand" "") + (match_operand:SI 2 "arith_operand" "")])) + (use (match_operand 3 ""))] + "" +{ + if (GET_CODE (operands[1]) == ZERO_EXTRACT && operands[2] != const0_rtx) + operands[1] = force_reg (SImode, operands[1]); + emit_conditional_branch_insn (operands); + DONE; +}) + +(define_expand "cbranchdi4" + [(use (match_operator 0 "comparison_operator" + [(match_operand:DI 1 "compare_operand" "") + (match_operand:DI 2 "arith_operand" "")])) + (use (match_operand 3 ""))] + "TARGET_ARCH64" +{ + if (GET_CODE (operands[1]) == ZERO_EXTRACT && operands[2] != const0_rtx) + operands[1] = force_reg (DImode, operands[1]); + emit_conditional_branch_insn (operands); + DONE; +}) + +(define_expand "cbranch4" + [(use (match_operator 0 "comparison_operator" + [(match_operand:F 1 "register_operand" "") + (match_operand:F 2 "register_operand" "")])) + (use (match_operand 3 ""))] + "TARGET_FPU" +{ + emit_conditional_branch_insn (operands); + DONE; +}) + + +;; Now match both normal and inverted jump. + +;; XXX fpcmp nop braindamage +(define_insn "*normal_branch" + [(set (pc) + (if_then_else (match_operator 0 "icc_comparison_operator" + [(reg CC_REG) (const_int 0)]) + (label_ref (match_operand 1 "" "")) + (pc)))] + "" +{ + return output_cbranch (operands[0], operands[1], 1, 0, + final_sequence && INSN_ANNULLED_BRANCH_P (insn), + insn); +} + [(set_attr "type" "branch") + (set_attr "branch_type" "icc")]) + +;; XXX fpcmp nop braindamage +(define_insn "*inverted_branch" + [(set (pc) + (if_then_else (match_operator 0 "icc_comparison_operator" + [(reg CC_REG) (const_int 0)]) + (pc) + (label_ref (match_operand 1 "" ""))))] + "" +{ + return output_cbranch (operands[0], operands[1], 1, 1, + final_sequence && INSN_ANNULLED_BRANCH_P (insn), + insn); +} + [(set_attr "type" "branch") + (set_attr "branch_type" "icc")]) + +;; XXX fpcmp nop braindamage +(define_insn "*normal_fp_branch" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(match_operand:CCFP 0 "fcc_register_operand" "c") + (const_int 0)]) + (label_ref (match_operand 2 "" "")) + (pc)))] + "" +{ + return output_cbranch (operands[1], operands[2], 2, 0, + final_sequence && INSN_ANNULLED_BRANCH_P (insn), + insn); +} + [(set_attr "type" "branch") + (set_attr "branch_type" "fcc")]) + +;; XXX fpcmp nop braindamage +(define_insn "*inverted_fp_branch" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(match_operand:CCFP 0 "fcc_register_operand" "c") + (const_int 0)]) + (pc) + (label_ref (match_operand 2 "" ""))))] + "" +{ + return output_cbranch (operands[1], operands[2], 2, 1, + final_sequence && INSN_ANNULLED_BRANCH_P (insn), + insn); +} + [(set_attr "type" "branch") + (set_attr "branch_type" "fcc")]) + +;; XXX fpcmp nop braindamage +(define_insn "*normal_fpe_branch" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(match_operand:CCFPE 0 "fcc_register_operand" "c") + (const_int 0)]) + (label_ref (match_operand 2 "" "")) + (pc)))] + "" +{ + return output_cbranch (operands[1], operands[2], 2, 0, + final_sequence && INSN_ANNULLED_BRANCH_P (insn), + insn); +} + [(set_attr "type" "branch") + (set_attr "branch_type" "fcc")]) + +;; XXX fpcmp nop braindamage +(define_insn "*inverted_fpe_branch" + [(set (pc) + (if_then_else (match_operator 1 "comparison_operator" + [(match_operand:CCFPE 0 "fcc_register_operand" "c") + (const_int 0)]) + (pc) + (label_ref (match_operand 2 "" ""))))] + "" +{ + return output_cbranch (operands[1], operands[2], 2, 1, + final_sequence && INSN_ANNULLED_BRANCH_P (insn), + insn); +} + [(set_attr "type" "branch") + (set_attr "branch_type" "fcc")]) + +;; SPARC V9-specific jump insns. None of these are guaranteed to be +;; in the architecture. + +(define_insn "*cbcond_sp32" + [(set (pc) + (if_then_else (match_operator 0 "comparison_operator" + [(match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith5_operand" "rA")]) + (label_ref (match_operand 3 "" "")) + (pc)))] + "TARGET_CBCOND" +{ + return output_cbcond (operands[0], operands[3], insn); +} + [(set_attr "type" "cbcond")]) + +(define_insn "*cbcond_sp64" + [(set (pc) + (if_then_else (match_operator 0 "comparison_operator" + [(match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "arith5_operand" "rA")]) + (label_ref (match_operand 3 "" "")) + (pc)))] + "TARGET_ARCH64 && TARGET_CBCOND" +{ + return output_cbcond (operands[0], operands[3], insn); +} + [(set_attr "type" "cbcond")]) + +;; There are no 32-bit brreg insns. + +(define_insn "*normal_int_branch_sp64" + [(set (pc) + (if_then_else (match_operator 0 "v9_register_comparison_operator" + [(match_operand:DI 1 "register_operand" "r") + (const_int 0)]) + (label_ref (match_operand 2 "" "")) + (pc)))] + "TARGET_ARCH64" +{ + return output_v9branch (operands[0], operands[2], 1, 2, 0, + final_sequence && INSN_ANNULLED_BRANCH_P (insn), + insn); +} + [(set_attr "type" "branch") + (set_attr "branch_type" "reg")]) + +(define_insn "*inverted_int_branch_sp64" + [(set (pc) + (if_then_else (match_operator 0 "v9_register_comparison_operator" + [(match_operand:DI 1 "register_operand" "r") + (const_int 0)]) + (pc) + (label_ref (match_operand 2 "" ""))))] + "TARGET_ARCH64" +{ + return output_v9branch (operands[0], operands[2], 1, 2, 1, + final_sequence && INSN_ANNULLED_BRANCH_P (insn), + insn); +} + [(set_attr "type" "branch") + (set_attr "branch_type" "reg")]) + + +;; Load in operand 0 the (absolute) address of operand 1, which is a symbolic +;; value subject to a PC-relative relocation. Operand 2 is a helper function +;; that adds the PC value at the call point to register #(operand 3). +;; +;; Even on V9 we use this call sequence with a stub, instead of "rd %pc, ..." +;; because the RDPC instruction is extremely expensive and incurs a complete +;; instruction pipeline flush. + +(define_insn "load_pcrel_sym" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "symbolic_operand" "") + (match_operand:P 2 "call_address_operand" "") + (match_operand:P 3 "const_int_operand" "")] + UNSPEC_LOAD_PCREL_SYM)) + (clobber (reg:P O7_REG))] + "REGNO (operands[0]) == INTVAL (operands[3])" +{ + return output_load_pcrel_sym (operands); +} + [(set (attr "type") (const_string "multi")) + (set (attr "length") + (if_then_else (eq_attr "delayed_branch" "true") + (const_int 3) + (const_int 4)))]) + + +;; Integer move instructions + +(define_expand "movqi" + [(set (match_operand:QI 0 "nonimmediate_operand" "") + (match_operand:QI 1 "general_operand" ""))] + "" +{ + if (sparc_expand_move (QImode, operands)) + DONE; +}) + +(define_insn "*movqi_insn" + [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m") + (match_operand:QI 1 "input_operand" "rI,m,rJ"))] + "(register_operand (operands[0], QImode) + || register_or_zero_operand (operands[1], QImode))" + "@ + mov\t%1, %0 + ldub\t%1, %0 + stb\t%r1, %0" + [(set_attr "type" "*,load,store") + (set_attr "subtype" "*,regular,*") + (set_attr "us3load_type" "*,3cycle,*")]) + +(define_expand "movhi" + [(set (match_operand:HI 0 "nonimmediate_operand" "") + (match_operand:HI 1 "general_operand" ""))] + "" +{ + if (sparc_expand_move (HImode, operands)) + DONE; +}) + +(define_insn "*movhi_insn" + [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,m") + (match_operand:HI 1 "input_operand" "rI,K,m,rJ"))] + "(register_operand (operands[0], HImode) + || register_or_zero_operand (operands[1], HImode))" + "@ + mov\t%1, %0 + sethi\t%%hi(%a1), %0 + lduh\t%1, %0 + sth\t%r1, %0" + [(set_attr "type" "*,*,load,store") + (set_attr "subtype" "*,*,regular,*") + (set_attr "us3load_type" "*,*,3cycle,*")]) + +;; We always work with constants here. +(define_insn "*movhi_lo_sum" + [(set (match_operand:HI 0 "register_operand" "=r") + (ior:HI (match_operand:HI 1 "register_operand" "%r") + (match_operand:HI 2 "small_int_operand" "I")))] + "" + "or\t%1, %2, %0") + +(define_expand "movsi" + [(set (match_operand:SI 0 "nonimmediate_operand" "") + (match_operand:SI 1 "general_operand" ""))] + "" +{ + if (sparc_expand_move (SImode, operands)) + DONE; +}) + +(define_insn "*movsi_insn" + [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r, m, r,*f,?*f,?*f, m,d,d") + (match_operand:SI 1 "input_operand" "rI,K,m,rJ,*f, r, f, m,?*f,J,P"))] + "register_operand (operands[0], SImode) + || register_or_zero_or_all_ones_operand (operands[1], SImode)" + "@ + mov\t%1, %0 + sethi\t%%hi(%a1), %0 + ld\t%1, %0 + st\t%r1, %0 + movstouw\t%1, %0 + movwtos\t%1, %0 + fmovs\t%1, %0 + ld\t%1, %0 + st\t%1, %0 + fzeros\t%0 + fones\t%0" + [(set_attr "type" "*,*,load,store,vismv,vismv,fpmove,fpload,fpstore,visl,visl") + (set_attr "subtype" "*,*,regular,*,movstouw,single,*,*,*,single,single") + (set_attr "cpu_feature" "*,*,*,*,vis3,vis3,*,*,*,vis,vis")]) + +(define_insn "*movsi_lo_sum" + [(set (match_operand:SI 0 "register_operand" "=r") + (lo_sum:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "immediate_operand" "in")))] + "!flag_pic" + "or\t%1, %%lo(%a2), %0") + +(define_insn "*movsi_high" + [(set (match_operand:SI 0 "register_operand" "=r") + (high:SI (match_operand:SI 1 "immediate_operand" "in")))] + "!flag_pic" + "sethi\t%%hi(%a1), %0") + +;; The next two patterns must wrap the SYMBOL_REF in an UNSPEC +;; so that CSE won't optimize the address computation away. +(define_insn "movsi_lo_sum_pic" + [(set (match_operand:SI 0 "register_operand" "=r") + (lo_sum:SI (match_operand:SI 1 "register_operand" "r") + (unspec:SI [(match_operand:SI 2 "immediate_operand" "in")] + UNSPEC_MOVE_PIC)))] + "flag_pic" +{ +#ifdef HAVE_AS_SPARC_GOTDATA_OP + return "xor\t%1, %%gdop_lox10(%a2), %0"; +#else + return "or\t%1, %%lo(%a2), %0"; +#endif +}) + +(define_insn "movsi_high_pic" + [(set (match_operand:SI 0 "register_operand" "=r") + (high:SI (unspec:SI [(match_operand 1 "" "")] UNSPEC_MOVE_PIC)))] + "flag_pic && check_pic (1)" +{ +#ifdef HAVE_AS_SPARC_GOTDATA_OP + return "sethi\t%%gdop_hix22(%a1), %0"; +#else + return "sethi\t%%hi(%a1), %0"; +#endif +}) + +(define_insn "movsi_pic_gotdata_op" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec:SI [(match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "register_operand" "r") + (match_operand 3 "symbolic_operand" "")] + UNSPEC_MOVE_GOTDATA))] + "flag_pic && check_pic (1)" +{ +#ifdef HAVE_AS_SPARC_GOTDATA_OP + return "ld\t[%1 + %2], %0, %%gdop(%a3)"; +#else + return "ld\t[%1 + %2], %0"; +#endif +} + [(set_attr "type" "load") + (set_attr "subtype" "regular")]) + +(define_expand "movsi_pic_label_ref" + [(set (match_dup 3) (high:SI + (unspec:SI [(match_operand:SI 1 "symbolic_operand" "") + (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) + (set (match_dup 4) (lo_sum:SI (match_dup 3) + (unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) + (set (match_operand:SI 0 "register_operand" "=r") + (minus:SI (match_dup 5) (match_dup 4)))] + "flag_pic" +{ + crtl->uses_pic_offset_table = 1; + operands[2] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); + if (!can_create_pseudo_p ()) + { + operands[3] = operands[0]; + operands[4] = operands[0]; + } + else + { + operands[3] = gen_reg_rtx (SImode); + operands[4] = gen_reg_rtx (SImode); + } + operands[5] = pic_offset_table_rtx; +}) + +(define_insn "*movsi_high_pic_label_ref" + [(set (match_operand:SI 0 "register_operand" "=r") + (high:SI + (unspec:SI [(match_operand:SI 1 "symbolic_operand" "") + (match_operand:SI 2 "" "")] UNSPEC_MOVE_PIC_LABEL)))] + "flag_pic" + "sethi\t%%hi(%a2-(%a1-.)), %0") + +(define_insn "*movsi_lo_sum_pic_label_ref" + [(set (match_operand:SI 0 "register_operand" "=r") + (lo_sum:SI (match_operand:SI 1 "register_operand" "r") + (unspec:SI [(match_operand:SI 2 "symbolic_operand" "") + (match_operand:SI 3 "" "")] UNSPEC_MOVE_PIC_LABEL)))] + "flag_pic" + "or\t%1, %%lo(%a3-(%a2-.)), %0") + +;; Set up the PIC register for VxWorks. + +(define_expand "vxworks_load_got" + [(set (match_dup 0) + (high:SI (match_dup 1))) + (set (match_dup 0) + (mem:SI (lo_sum:SI (match_dup 0) (match_dup 1)))) + (set (match_dup 0) + (mem:SI (lo_sum:SI (match_dup 0) (match_dup 2))))] + "TARGET_VXWORKS_RTP" +{ + operands[0] = pic_offset_table_rtx; + operands[1] = gen_rtx_SYMBOL_REF (SImode, VXWORKS_GOTT_BASE); + operands[2] = gen_rtx_SYMBOL_REF (SImode, VXWORKS_GOTT_INDEX); +}) + +(define_expand "movdi" + [(set (match_operand:DI 0 "nonimmediate_operand" "") + (match_operand:DI 1 "general_operand" ""))] + "" +{ + if (sparc_expand_move (DImode, operands)) + DONE; +}) + +;; Be careful, fmovd does not exist when !v9. +;; We match MEM moves directly when we have correct even +;; numbered registers, but fall into splits otherwise. +;; The constraint ordering here is really important to +;; avoid insane problems in reload, especially for patterns +;; of the form: +;; +;; (set (mem:DI (plus:SI (reg:SI 30 %fp) +;; (const_int -5016))) +;; (reg:DI 2 %g2)) +;; + +(define_insn "*movdi_insn_sp32" + [(set (match_operand:DI 0 "nonimmediate_operand" + "=T,o,U,T,r,o,r,r,?*f, T,?*f, o,?*e,?*e, r,?*f,?*e, T,*b,*b") + (match_operand:DI 1 "input_operand" + " J,J,T,U,o,r,i,r, T,?*f, o,?*f, *e, *e,?*f, r, T,?*e, J, P"))] + "TARGET_ARCH32 + && (register_operand (operands[0], DImode) + || register_or_zero_operand (operands[1], DImode))" + "@ + stx\t%r1, %0 + # + ldd\t%1, %0 + std\t%1, %0 + ldd\t%1, %0 + std\t%1, %0 + # + # + ldd\t%1, %0 + std\t%1, %0 + # + # + fmovd\t%1, %0 + # + # + # + ldd\t%1, %0 + std\t%1, %0 + fzero\t%0 + fone\t%0" + [(set_attr "type" "store,*,load,store,load,store,*,*,fpload,fpstore,*,*,fpmove,*,*,*,fpload,fpstore,visl, +visl") + (set_attr "subtype" "*,*,regular,*,regular,*,*,*,*,*,*,*,*,*,*,*,*,*,double,double") + (set_attr "length" "*,2,*,*,*,*,2,2,*,*,2,2,*,2,2,2,*,*,*,*") + (set_attr "fptype" "*,*,*,*,*,*,*,*,*,*,*,*,double,*,*,*,*,*,double,double") + (set_attr "cpu_feature" "v9,*,*,*,*,*,*,*,fpu,fpu,fpu,fpu,v9,fpunotv9,vis3,vis3,fpu,fpu,vis,vis") + (set_attr "lra" "*,*,disabled,disabled,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*")]) + +(define_insn "*movdi_insn_sp64" + [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r,r, m, r,*e,?*e,?*e, W,b,b") + (match_operand:DI 1 "input_operand" "rI,N,m,rJ,*e, r, *e, W,?*e,J,P"))] + "TARGET_ARCH64 + && (register_operand (operands[0], DImode) + || register_or_zero_or_all_ones_operand (operands[1], DImode))" + "@ + mov\t%1, %0 + sethi\t%%hi(%a1), %0 + ldx\t%1, %0 + stx\t%r1, %0 + movdtox\t%1, %0 + movxtod\t%1, %0 + fmovd\t%1, %0 + ldd\t%1, %0 + std\t%1, %0 + fzero\t%0 + fone\t%0" + [(set_attr "type" "*,*,load,store,vismv,vismv,fpmove,fpload,fpstore,visl,visl") + (set_attr "subtype" "*,*,regular,*,movdtox,movxtod,*,*,*,double,double") + (set_attr "fptype" "*,*,*,*,*,*,double,*,*,double,double") + (set_attr "cpu_feature" "*,*,*,*,vis3,vis3,*,*,*,vis,vis")]) + +(define_expand "movdi_pic_label_ref" + [(set (match_dup 3) (high:DI + (unspec:DI [(match_operand:DI 1 "symbolic_operand" "") + (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) + (set (match_dup 4) (lo_sum:DI (match_dup 3) + (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_MOVE_PIC_LABEL))) + (set (match_operand:DI 0 "register_operand" "=r") + (minus:DI (match_dup 5) (match_dup 4)))] + "TARGET_ARCH64 && flag_pic" +{ + crtl->uses_pic_offset_table = 1; + operands[2] = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); + if (!can_create_pseudo_p ()) + { + operands[3] = operands[0]; + operands[4] = operands[0]; + } + else + { + operands[3] = gen_reg_rtx (DImode); + operands[4] = gen_reg_rtx (DImode); + } + operands[5] = pic_offset_table_rtx; +}) + +(define_insn "*movdi_high_pic_label_ref" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI + (unspec:DI [(match_operand:DI 1 "symbolic_operand" "") + (match_operand:DI 2 "" "")] UNSPEC_MOVE_PIC_LABEL)))] + "TARGET_ARCH64 && flag_pic" + "sethi\t%%hi(%a2-(%a1-.)), %0") + +(define_insn "*movdi_lo_sum_pic_label_ref" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (unspec:DI [(match_operand:DI 2 "symbolic_operand" "") + (match_operand:DI 3 "" "")] UNSPEC_MOVE_PIC_LABEL)))] + "TARGET_ARCH64 && flag_pic" + "or\t%1, %%lo(%a3-(%a2-.)), %0") + +;; SPARC-v9 code model support insns. See sparc_emit_set_symbolic_const64 +;; in sparc.c to see what is going on here... PIC stuff comes first. + +(define_insn "movdi_lo_sum_pic" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (unspec:DI [(match_operand:DI 2 "immediate_operand" "in")] + UNSPEC_MOVE_PIC)))] + "TARGET_ARCH64 && flag_pic" +{ +#ifdef HAVE_AS_SPARC_GOTDATA_OP + return "xor\t%1, %%gdop_lox10(%a2), %0"; +#else + return "or\t%1, %%lo(%a2), %0"; +#endif +}) + +(define_insn "movdi_high_pic" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (unspec:DI [(match_operand 1 "" "")] UNSPEC_MOVE_PIC)))] + "TARGET_ARCH64 && flag_pic && check_pic (1)" +{ +#ifdef HAVE_AS_SPARC_GOTDATA_OP + return "sethi\t%%gdop_hix22(%a1), %0"; +#else + return "sethi\t%%hi(%a1), %0"; +#endif +}) + +(define_insn "movdi_pic_gotdata_op" + [(set (match_operand:DI 0 "register_operand" "=r") + (unspec:DI [(match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "register_operand" "r") + (match_operand 3 "symbolic_operand" "")] + UNSPEC_MOVE_GOTDATA))] + "TARGET_ARCH64 && flag_pic && check_pic (1)" +{ +#ifdef HAVE_AS_SPARC_GOTDATA_OP + return "ldx\t[%1 + %2], %0, %%gdop(%a3)"; +#else + return "ldx\t[%1 + %2], %0"; +#endif +} + [(set_attr "type" "load") + (set_attr "subtype" "regular")]) + +(define_insn "*sethi_di_medlow_embmedany_pic" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (match_operand:DI 1 "medium_pic_operand" "")))] + "(TARGET_CM_MEDLOW || TARGET_CM_EMBMEDANY) && flag_pic && check_pic (1)" + "sethi\t%%hi(%a1), %0") + +(define_insn "*sethi_di_medlow" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (match_operand:DI 1 "symbolic_operand" "")))] + "TARGET_CM_MEDLOW && !flag_pic" + "sethi\t%%hi(%a1), %0") + +(define_insn "*losum_di_medlow" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "symbolic_operand" "")))] + "TARGET_CM_MEDLOW && !flag_pic" + "or\t%1, %%lo(%a2), %0") + +(define_insn "seth44" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] + UNSPEC_SETH44)))] + "TARGET_CM_MEDMID && !flag_pic" + "sethi\t%%h44(%a1), %0") + +(define_insn "setm44" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (unspec:DI [(match_operand:DI 2 "symbolic_operand" "")] + UNSPEC_SETM44)))] + "TARGET_CM_MEDMID && !flag_pic" + "or\t%1, %%m44(%a2), %0") + +(define_insn "setl44" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "symbolic_operand" "")))] + "TARGET_CM_MEDMID && !flag_pic" + "or\t%1, %%l44(%a2), %0") + +(define_insn "sethh" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] + UNSPEC_SETHH)))] + "TARGET_CM_MEDANY && !flag_pic" + "sethi\t%%hh(%a1), %0") + +(define_insn "setlm" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (unspec:DI [(match_operand:DI 1 "symbolic_operand" "")] + UNSPEC_SETLM)))] + "TARGET_CM_MEDANY && !flag_pic" + "sethi\t%%lm(%a1), %0") + +(define_insn "sethm" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (unspec:DI [(match_operand:DI 2 "symbolic_operand" "")] + UNSPEC_EMB_SETHM)))] + "TARGET_CM_MEDANY && !flag_pic" + "or\t%1, %%hm(%a2), %0") + +(define_insn "setlo" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "symbolic_operand" "")))] + "TARGET_CM_MEDANY && !flag_pic" + "or\t%1, %%lo(%a2), %0") + +(define_insn "embmedany_sethi" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (unspec:DI [(match_operand:DI 1 "data_segment_operand" "")] + UNSPEC_EMB_HISUM)))] + "TARGET_CM_EMBMEDANY && !flag_pic" + "sethi\t%%hi(%a1), %0") + +(define_insn "embmedany_losum" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "data_segment_operand" "")))] + "TARGET_CM_EMBMEDANY && !flag_pic" + "add\t%1, %%lo(%a2), %0") + +(define_insn "embmedany_brsum" + [(set (match_operand:DI 0 "register_operand" "=r") + (unspec:DI [(match_operand:DI 1 "register_operand" "r")] + UNSPEC_EMB_HISUM))] + "TARGET_CM_EMBMEDANY && !flag_pic" + "add\t%1, %_, %0") + +(define_insn "embmedany_textuhi" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (unspec:DI [(match_operand:DI 1 "text_segment_operand" "")] + UNSPEC_EMB_TEXTUHI)))] + "TARGET_CM_EMBMEDANY && !flag_pic" + "sethi\t%%uhi(%a1), %0") + +(define_insn "embmedany_texthi" + [(set (match_operand:DI 0 "register_operand" "=r") + (high:DI (unspec:DI [(match_operand:DI 1 "text_segment_operand" "")] + UNSPEC_EMB_TEXTHI)))] + "TARGET_CM_EMBMEDANY && !flag_pic" + "sethi\t%%hi(%a1), %0") + +(define_insn "embmedany_textulo" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (unspec:DI [(match_operand:DI 2 "text_segment_operand" "")] + UNSPEC_EMB_TEXTULO)))] + "TARGET_CM_EMBMEDANY && !flag_pic" + "or\t%1, %%ulo(%a2), %0") + +(define_insn "embmedany_textlo" + [(set (match_operand:DI 0 "register_operand" "=r") + (lo_sum:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "text_segment_operand" "")))] + "TARGET_CM_EMBMEDANY && !flag_pic" + "or\t%1, %%lo(%a2), %0") + +;; Now some patterns to help reload out a bit. +(define_expand "reload_indi" + [(parallel [(match_operand:DI 0 "register_operand" "=r") + (match_operand:DI 1 "immediate_operand" "") + (match_operand:TI 2 "register_operand" "=&r")])] + "(TARGET_CM_MEDANY || TARGET_CM_EMBMEDANY) && !flag_pic" +{ + sparc_emit_set_symbolic_const64 (operands[0], operands[1], operands[2]); + DONE; +}) + +(define_expand "reload_outdi" + [(parallel [(match_operand:DI 0 "register_operand" "=r") + (match_operand:DI 1 "immediate_operand" "") + (match_operand:TI 2 "register_operand" "=&r")])] + "(TARGET_CM_MEDANY || TARGET_CM_EMBMEDANY) && !flag_pic" +{ + sparc_emit_set_symbolic_const64 (operands[0], operands[1], operands[2]); + DONE; +}) + +;; Split up putting CONSTs and REGs into DI regs when !arch64 +(define_split + [(set (match_operand:DI 0 "register_operand" "") + (match_operand:DI 1 "const_int_operand" ""))] + "reload_completed + && TARGET_ARCH32 + && ((GET_CODE (operands[0]) == REG + && SPARC_INT_REG_P (REGNO (operands[0]))) + || (GET_CODE (operands[0]) == SUBREG + && GET_CODE (SUBREG_REG (operands[0])) == REG + && SPARC_INT_REG_P (REGNO (SUBREG_REG (operands[0])))))" + [(clobber (const_int 0))] +{ + HOST_WIDE_INT low = trunc_int_for_mode (INTVAL (operands[1]), SImode); + HOST_WIDE_INT high = trunc_int_for_mode (INTVAL (operands[1]) >> 32, SImode); + rtx high_part = gen_highpart (SImode, operands[0]); + rtx low_part = gen_lowpart (SImode, operands[0]); + + emit_move_insn_1 (high_part, GEN_INT (high)); + + /* Slick... but this loses if the constant can be done in one insn. */ + if (low == high && !SPARC_SETHI32_P (high) && !SPARC_SIMM13_P (high)) + emit_move_insn_1 (low_part, high_part); + else + emit_move_insn_1 (low_part, GEN_INT (low)); + + DONE; +}) + +(define_split + [(set (match_operand:DI 0 "register_operand" "") + (match_operand:DI 1 "register_operand" ""))] + "reload_completed + && (!TARGET_V9 + || (TARGET_ARCH32 + && sparc_split_reg_reg_legitimate (operands[0], operands[1])))" + [(clobber (const_int 0))] +{ + sparc_split_reg_reg (operands[0], operands[1], SImode); + DONE; +}) + +;; Now handle the cases of memory moves from/to non-even +;; DI mode register pairs. +(define_split + [(set (match_operand:DI 0 "register_operand" "") + (match_operand:DI 1 "memory_operand" ""))] + "reload_completed + && TARGET_ARCH32 + && sparc_split_reg_mem_legitimate (operands[0], operands[1])" + [(clobber (const_int 0))] +{ + sparc_split_reg_mem (operands[0], operands[1], SImode); + DONE; +}) + +(define_split + [(set (match_operand:DI 0 "memory_operand" "") + (match_operand:DI 1 "register_operand" ""))] + "reload_completed + && TARGET_ARCH32 + && sparc_split_reg_mem_legitimate (operands[1], operands[0])" + [(clobber (const_int 0))] +{ + sparc_split_mem_reg (operands[0], operands[1], SImode); + DONE; +}) + +(define_split + [(set (match_operand:DI 0 "memory_operand" "") + (match_operand:DI 1 "const_zero_operand" ""))] + "reload_completed + && (!TARGET_V9 + || (TARGET_ARCH32 + && !mem_min_alignment (operands[0], 8))) + && offsettable_memref_p (operands[0])" + [(clobber (const_int 0))] +{ + emit_move_insn_1 (adjust_address (operands[0], SImode, 0), const0_rtx); + emit_move_insn_1 (adjust_address (operands[0], SImode, 4), const0_rtx); + DONE; +}) + +(define_expand "movti" + [(set (match_operand:TI 0 "nonimmediate_operand" "") + (match_operand:TI 1 "general_operand" ""))] + "TARGET_ARCH64" +{ + if (sparc_expand_move (TImode, operands)) + DONE; +}) + +;; We need to prevent reload from splitting TImode moves, because it +;; might decide to overwrite a pointer with the value it points to. +;; In that case we have to do the loads in the appropriate order so +;; that the pointer is not destroyed too early. + +(define_insn "*movti_insn_sp64" + [(set (match_operand:TI 0 "nonimmediate_operand" "=r , o,?*e,?o,b") + (match_operand:TI 1 "input_operand" "roJ,rJ, eo, e,J"))] + "TARGET_ARCH64 + && !TARGET_HARD_QUAD + && (register_operand (operands[0], TImode) + || register_or_zero_operand (operands[1], TImode))" + "#" + [(set_attr "length" "2,2,2,2,2") + (set_attr "cpu_feature" "*,*,fpu,fpu,vis")]) + +(define_insn "*movti_insn_sp64_hq" + [(set (match_operand:TI 0 "nonimmediate_operand" "=r , o,?*e,?*e,?m,b") + (match_operand:TI 1 "input_operand" "roJ,rJ, e, m, e,J"))] + "TARGET_ARCH64 + && TARGET_HARD_QUAD + && (register_operand (operands[0], TImode) + || register_or_zero_operand (operands[1], TImode))" + "@ + # + # + fmovq\t%1, %0 + ldq\t%1, %0 + stq\t%1, %0 + #" + [(set_attr "type" "*,*,fpmove,fpload,fpstore,*") + (set_attr "length" "2,2,*,*,*,2")]) + +;; Now all the splits to handle multi-insn TI mode moves. +(define_split + [(set (match_operand:TI 0 "register_operand" "") + (match_operand:TI 1 "register_operand" ""))] + "reload_completed + && ((TARGET_FPU + && !TARGET_HARD_QUAD) + || (!fp_register_operand (operands[0], TImode) + && !fp_register_operand (operands[1], TImode)))" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx set_src = operands[1]; + rtx dest1, dest2; + rtx src1, src2; + + dest1 = gen_highpart (DImode, set_dest); + dest2 = gen_lowpart (DImode, set_dest); + src1 = gen_highpart (DImode, set_src); + src2 = gen_lowpart (DImode, set_src); + + /* Now emit using the real source and destination we found, swapping + the order if we detect overlap. */ + if (reg_overlap_mentioned_p (dest1, src2)) + { + emit_insn (gen_movdi (dest2, src2)); + emit_insn (gen_movdi (dest1, src1)); + } + else + { + emit_insn (gen_movdi (dest1, src1)); + emit_insn (gen_movdi (dest2, src2)); + } + DONE; +}) + +(define_split + [(set (match_operand:TI 0 "nonimmediate_operand" "") + (match_operand:TI 1 "const_zero_operand" ""))] + "reload_completed" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx dest1, dest2; + + switch (GET_CODE (set_dest)) + { + case REG: + dest1 = gen_highpart (DImode, set_dest); + dest2 = gen_lowpart (DImode, set_dest); + break; + case MEM: + dest1 = adjust_address (set_dest, DImode, 0); + dest2 = adjust_address (set_dest, DImode, 8); + break; + default: + gcc_unreachable (); + } + + emit_insn (gen_movdi (dest1, const0_rtx)); + emit_insn (gen_movdi (dest2, const0_rtx)); + DONE; +}) + +(define_split + [(set (match_operand:TI 0 "register_operand" "") + (match_operand:TI 1 "memory_operand" ""))] + "reload_completed + && offsettable_memref_p (operands[1]) + && (!TARGET_HARD_QUAD + || !fp_register_operand (operands[0], TImode))" + [(clobber (const_int 0))] +{ + rtx word0 = adjust_address (operands[1], DImode, 0); + rtx word1 = adjust_address (operands[1], DImode, 8); + rtx set_dest, dest1, dest2; + + set_dest = operands[0]; + + dest1 = gen_highpart (DImode, set_dest); + dest2 = gen_lowpart (DImode, set_dest); + + /* Now output, ordering such that we don't clobber any registers + mentioned in the address. */ + if (reg_overlap_mentioned_p (dest1, word1)) + + { + emit_insn (gen_movdi (dest2, word1)); + emit_insn (gen_movdi (dest1, word0)); + } + else + { + emit_insn (gen_movdi (dest1, word0)); + emit_insn (gen_movdi (dest2, word1)); + } + DONE; +}) + +(define_split + [(set (match_operand:TI 0 "memory_operand" "") + (match_operand:TI 1 "register_operand" ""))] + "reload_completed + && offsettable_memref_p (operands[0]) + && (!TARGET_HARD_QUAD + || !fp_register_operand (operands[1], TImode))" + [(clobber (const_int 0))] +{ + rtx set_src = operands[1]; + + emit_insn (gen_movdi (adjust_address (operands[0], DImode, 0), + gen_highpart (DImode, set_src))); + emit_insn (gen_movdi (adjust_address (operands[0], DImode, 8), + gen_lowpart (DImode, set_src))); + DONE; +}) + + +;; Floating point move instructions + +(define_expand "movsf" + [(set (match_operand:SF 0 "nonimmediate_operand" "") + (match_operand:SF 1 "general_operand" ""))] + "" +{ + if (sparc_expand_move (SFmode, operands)) + DONE; +}) + +(define_insn "*movsf_insn" + [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,f, *r,*r,*r,*r, f,f,*r,m, m") + (match_operand:SF 1 "input_operand" "G,C,f,*rR, Q, S, f,*r,m, m,f,*rG"))] + "(register_operand (operands[0], SFmode) + || register_or_zero_or_all_ones_operand (operands[1], SFmode))" +{ + if (GET_CODE (operands[1]) == CONST_DOUBLE + && (which_alternative == 3 + || which_alternative == 4 + || which_alternative == 5)) + { + long i; + + REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[1]), i); + operands[1] = GEN_INT (i); + } + + switch (which_alternative) + { + case 0: + return "fzeros\t%0"; + case 1: + return "fones\t%0"; + case 2: + return "fmovs\t%1, %0"; + case 3: + return "mov\t%1, %0"; + case 4: + return "sethi\t%%hi(%a1), %0"; + case 5: + return "#"; + case 6: + return "movstouw\t%1, %0"; + case 7: + return "movwtos\t%1, %0"; + case 8: + case 9: + return "ld\t%1, %0"; + case 10: + case 11: + return "st\t%r1, %0"; + default: + gcc_unreachable (); + } +} + [(set_attr "type" "visl,visl,fpmove,*,*,*,vismv,vismv,fpload,load,fpstore,store") + (set_attr "subtype" "single,single,*,*,*,*,movstouw,single,*,regular,*,*") + (set_attr "cpu_feature" "vis,vis,fpu,*,*,*,vis3,vis3,fpu,*,fpu,*")]) + +;; The following 3 patterns build SFmode constants in integer registers. + +(define_insn "*movsf_lo_sum" + [(set (match_operand:SF 0 "register_operand" "=r") + (lo_sum:SF (match_operand:SF 1 "register_operand" "r") + (match_operand:SF 2 "fp_const_high_losum_operand" "S")))] + "" +{ + long i; + + REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[2]), i); + operands[2] = GEN_INT (i); + return "or\t%1, %%lo(%a2), %0"; +}) + +(define_insn "*movsf_high" + [(set (match_operand:SF 0 "register_operand" "=r") + (high:SF (match_operand:SF 1 "fp_const_high_losum_operand" "S")))] + "" +{ + long i; + + REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[1]), i); + operands[1] = GEN_INT (i); + return "sethi\t%%hi(%1), %0"; +}) + +(define_split + [(set (match_operand:SF 0 "register_operand" "") + (match_operand:SF 1 "fp_const_high_losum_operand" ""))] + "REG_P (operands[0]) && SPARC_INT_REG_P (REGNO (operands[0]))" + [(set (match_dup 0) (high:SF (match_dup 1))) + (set (match_dup 0) (lo_sum:SF (match_dup 0) (match_dup 1)))]) + +(define_expand "movdf" + [(set (match_operand:DF 0 "nonimmediate_operand" "") + (match_operand:DF 1 "general_operand" ""))] + "" +{ + if (sparc_expand_move (DFmode, operands)) + DONE; +}) + +(define_insn "*movdf_insn_sp32" + [(set (match_operand:DF 0 "nonimmediate_operand" + "=T,o,b,b,e,e,*r, f, e,T,U,T, f,o, *r,*r, o") + (match_operand:DF 1 "input_operand" + " G,G,G,C,e,e, f,*r,T#F,e,T,U,o#F,f,*rF, o,*r"))] + "TARGET_ARCH32 + && (register_operand (operands[0], DFmode) + || register_or_zero_or_all_ones_operand (operands[1], DFmode))" + "@ + stx\t%r1, %0 + # + fzero\t%0 + fone\t%0 + fmovd\t%1, %0 + # + # + # + ldd\t%1, %0 + std\t%1, %0 + ldd\t%1, %0 + std\t%1, %0 + # + # + # + ldd\t%1, %0 + std\t%1, %0" + [(set_attr "type" "store,*,visl,visl,fpmove,*,*,*,fpload,fpstore,load,store,*,*,*,load,store") + (set_attr "subtype" "*,*,double,double,*,*,*,*,*,*,regular,*,*,*,*,regular,*") + (set_attr "length" "*,2,*,*,*,2,2,2,*,*,*,*,2,2,2,*,*") + (set_attr "fptype" "*,*,double,double,double,*,*,*,*,*,*,*,*,*,*,*,*") + (set_attr "cpu_feature" "v9,*,vis,vis,v9,fpunotv9,vis3,vis3,fpu,fpu,*,*,fpu,fpu,*,*,*") + (set_attr "lra" "*,*,*,*,*,*,*,*,*,*,disabled,disabled,*,*,*,*,*")]) + +(define_insn "*movdf_insn_sp64" + [(set (match_operand:DF 0 "nonimmediate_operand" "=b,b,e,*r, e, e,W, *r,*r, m,*r") + (match_operand:DF 1 "input_operand" "G,C,e, e,*r,W#F,e,*rG, m,*rG, F"))] + "TARGET_ARCH64 + && (register_operand (operands[0], DFmode) + || register_or_zero_or_all_ones_operand (operands[1], DFmode))" + "@ + fzero\t%0 + fone\t%0 + fmovd\t%1, %0 + movdtox\t%1, %0 + movxtod\t%1, %0 + ldd\t%1, %0 + std\t%1, %0 + mov\t%r1, %0 + ldx\t%1, %0 + stx\t%r1, %0 + #" + [(set_attr "type" "visl,visl,fpmove,vismv,vismv,load,store,*,load,store,*") + (set_attr "subtype" "double,double,*,movdtox,movxtod,regular,*,*,regular,*,*") + (set_attr "length" "*,*,*,*,*,*,*,*,*,*,2") + (set_attr "fptype" "double,double,double,double,double,*,*,*,*,*,*") + (set_attr "cpu_feature" "vis,vis,fpu,vis3,vis3,fpu,fpu,*,*,*,*")]) + +;; This pattern builds DFmode constants in integer registers. +(define_split + [(set (match_operand:DF 0 "register_operand" "") + (match_operand:DF 1 "const_double_operand" ""))] + "reload_completed + && REG_P (operands[0]) + && SPARC_INT_REG_P (REGNO (operands[0])) + && !const_zero_operand (operands[1], GET_MODE (operands[0]))" + [(clobber (const_int 0))] +{ + operands[0] = gen_raw_REG (DImode, REGNO (operands[0])); + + if (TARGET_ARCH64) + { + rtx tem = simplify_subreg (DImode, operands[1], DFmode, 0); + emit_insn (gen_movdi (operands[0], tem)); + } + else + { + rtx hi = simplify_subreg (SImode, operands[1], DFmode, 0); + rtx lo = simplify_subreg (SImode, operands[1], DFmode, 4); + rtx high_part = gen_highpart (SImode, operands[0]); + rtx low_part = gen_lowpart (SImode, operands[0]); + + gcc_assert (GET_CODE (hi) == CONST_INT); + gcc_assert (GET_CODE (lo) == CONST_INT); + + emit_move_insn_1 (high_part, hi); + + /* Slick... but this loses if the constant can be done in one insn. */ + if (lo == hi + && !SPARC_SETHI32_P (INTVAL (hi)) + && !SPARC_SIMM13_P (INTVAL (hi))) + emit_move_insn_1 (low_part, high_part); + else + emit_move_insn_1 (low_part, lo); + } + DONE; +}) + +;; Ok, now the splits to handle all the multi insn and +;; mis-aligned memory address cases. +;; In these splits please take note that we must be +;; careful when V9 but not ARCH64 because the integer +;; register DFmode cases must be handled. +(define_split + [(set (match_operand:DF 0 "register_operand" "") + (match_operand:DF 1 "const_zero_operand" ""))] + "reload_completed + && TARGET_ARCH32 + && ((GET_CODE (operands[0]) == REG + && SPARC_INT_REG_P (REGNO (operands[0]))) + || (GET_CODE (operands[0]) == SUBREG + && GET_CODE (SUBREG_REG (operands[0])) == REG + && SPARC_INT_REG_P (REGNO (SUBREG_REG (operands[0])))))" + [(clobber (const_int 0))] +{ + emit_move_insn_1 (gen_highpart (SFmode, operands[0]), CONST0_RTX (SFmode)); + emit_move_insn_1 (gen_lowpart (SFmode, operands[0]), CONST0_RTX (SFmode)); + DONE; +}) + +(define_split + [(set (match_operand:DF 0 "register_operand" "") + (match_operand:DF 1 "register_operand" ""))] + "reload_completed + && (!TARGET_V9 + || (TARGET_ARCH32 + && sparc_split_reg_reg_legitimate (operands[0], operands[1])))" + [(clobber (const_int 0))] +{ + sparc_split_reg_reg (operands[0], operands[1], SFmode); + DONE; +}) + +(define_split + [(set (match_operand:DF 0 "register_operand" "") + (match_operand:DF 1 "memory_operand" ""))] + "reload_completed + && TARGET_ARCH32 + && sparc_split_reg_mem_legitimate (operands[0], operands[1])" + [(clobber (const_int 0))] +{ + sparc_split_reg_mem (operands[0], operands[1], SFmode); + DONE; +}) + +(define_split + [(set (match_operand:DF 0 "memory_operand" "") + (match_operand:DF 1 "register_operand" ""))] + "reload_completed + && TARGET_ARCH32 + && sparc_split_reg_mem_legitimate (operands[1], operands[0])" + [(clobber (const_int 0))] +{ + sparc_split_mem_reg (operands[0], operands[1], SFmode); + DONE; +}) + +(define_split + [(set (match_operand:DF 0 "memory_operand" "") + (match_operand:DF 1 "const_zero_operand" ""))] + "reload_completed + && (!TARGET_V9 + || (TARGET_ARCH32 + && !mem_min_alignment (operands[0], 8))) + && offsettable_memref_p (operands[0])" + [(clobber (const_int 0))] +{ + emit_move_insn_1 (adjust_address (operands[0], SFmode, 0), CONST0_RTX (SFmode)); + emit_move_insn_1 (adjust_address (operands[0], SFmode, 4), CONST0_RTX (SFmode)); + DONE; +}) + +(define_expand "movtf" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (match_operand:TF 1 "general_operand" ""))] + "" +{ + if (sparc_expand_move (TFmode, operands)) + DONE; +}) + +(define_insn "*movtf_insn_sp32" + [(set (match_operand:TF 0 "nonimmediate_operand" "=b, e,o, o, r") + (match_operand:TF 1 "input_operand" " G,oe,e,rG,roG"))] + "TARGET_ARCH32 + && (register_operand (operands[0], TFmode) + || register_or_zero_operand (operands[1], TFmode))" + "#" + [(set_attr "length" "4,4,4,4,4") + (set_attr "cpu_feature" "fpu,fpu,fpu,*,*")]) + +(define_insn "*movtf_insn_sp64" + [(set (match_operand:TF 0 "nonimmediate_operand" "=b, e,o, o, r") + (match_operand:TF 1 "input_operand" "G,oe,e,rG,roG"))] + "TARGET_ARCH64 + && !TARGET_HARD_QUAD + && (register_operand (operands[0], TFmode) + || register_or_zero_operand (operands[1], TFmode))" + "#" + [(set_attr "length" "2,2,2,2,2") + (set_attr "cpu_feature" "fpu,fpu,fpu,*,*")]) + +(define_insn "*movtf_insn_sp64_hq" + [(set (match_operand:TF 0 "nonimmediate_operand" "=b,e,e,m, o, r") + (match_operand:TF 1 "input_operand" "G,e,m,e,rG,roG"))] + "TARGET_ARCH64 + && TARGET_HARD_QUAD + && (register_operand (operands[0], TFmode) + || register_or_zero_operand (operands[1], TFmode))" + "@ + # + fmovq\t%1, %0 + ldq\t%1, %0 + stq\t%1, %0 + # + #" + [(set_attr "type" "*,fpmove,fpload,fpstore,*,*") + (set_attr "length" "2,*,*,*,2,2")]) + +;; Now all the splits to handle multi-insn TF mode moves. +(define_split + [(set (match_operand:TF 0 "register_operand" "") + (match_operand:TF 1 "register_operand" ""))] + "reload_completed + && (TARGET_ARCH32 + || (TARGET_FPU + && !TARGET_HARD_QUAD) + || (!fp_register_operand (operands[0], TFmode) + && !fp_register_operand (operands[1], TFmode)))" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx set_src = operands[1]; + rtx dest1, dest2; + rtx src1, src2; + + dest1 = gen_df_reg (set_dest, 0); + dest2 = gen_df_reg (set_dest, 1); + src1 = gen_df_reg (set_src, 0); + src2 = gen_df_reg (set_src, 1); + + /* Now emit using the real source and destination we found, swapping + the order if we detect overlap. */ + if (reg_overlap_mentioned_p (dest1, src2)) + { + emit_insn (gen_movdf (dest2, src2)); + emit_insn (gen_movdf (dest1, src1)); + } + else + { + emit_insn (gen_movdf (dest1, src1)); + emit_insn (gen_movdf (dest2, src2)); + } + DONE; +}) + +(define_split + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (match_operand:TF 1 "const_zero_operand" ""))] + "reload_completed" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx dest1, dest2; + + switch (GET_CODE (set_dest)) + { + case REG: + dest1 = gen_df_reg (set_dest, 0); + dest2 = gen_df_reg (set_dest, 1); + break; + case MEM: + dest1 = adjust_address (set_dest, DFmode, 0); + dest2 = adjust_address (set_dest, DFmode, 8); + break; + default: + gcc_unreachable (); + } + + emit_insn (gen_movdf (dest1, CONST0_RTX (DFmode))); + emit_insn (gen_movdf (dest2, CONST0_RTX (DFmode))); + DONE; +}) + +(define_split + [(set (match_operand:TF 0 "register_operand" "") + (match_operand:TF 1 "memory_operand" ""))] + "(reload_completed + && offsettable_memref_p (operands[1]) + && (TARGET_ARCH32 + || !TARGET_HARD_QUAD + || !fp_register_operand (operands[0], TFmode)))" + [(clobber (const_int 0))] +{ + rtx word0 = adjust_address (operands[1], DFmode, 0); + rtx word1 = adjust_address (operands[1], DFmode, 8); + rtx set_dest, dest1, dest2; + + set_dest = operands[0]; + + dest1 = gen_df_reg (set_dest, 0); + dest2 = gen_df_reg (set_dest, 1); + + /* Now output, ordering such that we don't clobber any registers + mentioned in the address. */ + if (reg_overlap_mentioned_p (dest1, word1)) + + { + emit_insn (gen_movdf (dest2, word1)); + emit_insn (gen_movdf (dest1, word0)); + } + else + { + emit_insn (gen_movdf (dest1, word0)); + emit_insn (gen_movdf (dest2, word1)); + } + DONE; +}) + +(define_split + [(set (match_operand:TF 0 "memory_operand" "") + (match_operand:TF 1 "register_operand" ""))] + "(reload_completed + && offsettable_memref_p (operands[0]) + && (TARGET_ARCH32 + || !TARGET_HARD_QUAD + || !fp_register_operand (operands[1], TFmode)))" + [(clobber (const_int 0))] +{ + rtx set_src = operands[1]; + + emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 0), + gen_df_reg (set_src, 0))); + emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 8), + gen_df_reg (set_src, 1))); + DONE; +}) + + +;; SPARC-V9 conditional move instructions + +;; We can handle larger constants here for some flavors, but for now we keep +;; it simple and only allow those constants supported by all flavors. +;; Note that emit_conditional_move canonicalizes operands 2,3 so that operand +;; 3 contains the constant if one is present, but we handle either for +;; generality (sparc.c puts a constant in operand 2). +;; +;; Our instruction patterns, on the other hand, canonicalize such that +;; operand 3 must be the set destination. + +(define_expand "movcc" + [(set (match_operand:I 0 "register_operand" "") + (if_then_else:I (match_operand 1 "comparison_operator" "") + (match_operand:I 2 "arith10_operand" "") + (match_operand:I 3 "arith10_operand" "")))] + "TARGET_V9 && !(mode == DImode && TARGET_ARCH32)" +{ + if (!sparc_expand_conditional_move (mode, operands)) + FAIL; + DONE; +}) + +(define_expand "movcc" + [(set (match_operand:F 0 "register_operand" "") + (if_then_else:F (match_operand 1 "comparison_operator" "") + (match_operand:F 2 "register_operand" "") + (match_operand:F 3 "register_operand" "")))] + "TARGET_V9 && TARGET_FPU" +{ + if (!sparc_expand_conditional_move (mode, operands)) + FAIL; + DONE; +}) + +(define_insn "*mov_cc_v9" + [(set (match_operand:I 0 "register_operand" "=r") + (if_then_else:I (match_operator 1 "icc_or_fcc_comparison_operator" + [(match_operand 2 "icc_or_fcc_register_operand" "X") + (const_int 0)]) + (match_operand:I 3 "arith11_operand" "rL") + (match_operand:I 4 "register_operand" "0")))] + "TARGET_V9 && !(mode == DImode && TARGET_ARCH32)" + "mov%C1\t%x2, %3, %0" + [(set_attr "type" "cmove")]) + +(define_insn "*mov_cc_reg_sp64" + [(set (match_operand:I 0 "register_operand" "=r") + (if_then_else:I (match_operator 1 "v9_register_comparison_operator" + [(match_operand:DI 2 "register_operand" "r") + (const_int 0)]) + (match_operand:I 3 "arith10_operand" "rM") + (match_operand:I 4 "register_operand" "0")))] + "TARGET_ARCH64" + "movr%D1\t%2, %r3, %0" + [(set_attr "type" "cmove")]) + +(define_insn "*movsf_cc_v9" + [(set (match_operand:SF 0 "register_operand" "=f") + (if_then_else:SF (match_operator 1 "icc_or_fcc_comparison_operator" + [(match_operand 2 "icc_or_fcc_register_operand" "X") + (const_int 0)]) + (match_operand:SF 3 "register_operand" "f") + (match_operand:SF 4 "register_operand" "0")))] + "TARGET_V9 && TARGET_FPU" + "fmovs%C1\t%x2, %3, %0" + [(set_attr "type" "fpcmove")]) + +(define_insn "*movsf_cc_reg_sp64" + [(set (match_operand:SF 0 "register_operand" "=f") + (if_then_else:SF (match_operator 1 "v9_register_comparison_operator" + [(match_operand:DI 2 "register_operand" "r") + (const_int 0)]) + (match_operand:SF 3 "register_operand" "f") + (match_operand:SF 4 "register_operand" "0")))] + "TARGET_ARCH64 && TARGET_FPU" + "fmovrs%D1\t%2, %3, %0" + [(set_attr "type" "fpcrmove")]) + +;; Named because invoked by movtf_cc_v9 +(define_insn "movdf_cc_v9" + [(set (match_operand:DF 0 "register_operand" "=e") + (if_then_else:DF (match_operator 1 "icc_or_fcc_comparison_operator" + [(match_operand 2 "icc_or_fcc_register_operand" "X") + (const_int 0)]) + (match_operand:DF 3 "register_operand" "e") + (match_operand:DF 4 "register_operand" "0")))] + "TARGET_V9 && TARGET_FPU" + "fmovd%C1\t%x2, %3, %0" + [(set_attr "type" "fpcmove") + (set_attr "fptype" "double")]) + +;; Named because invoked by movtf_cc_reg_sp64 +(define_insn "movdf_cc_reg_sp64" + [(set (match_operand:DF 0 "register_operand" "=e") + (if_then_else:DF (match_operator 1 "v9_register_comparison_operator" + [(match_operand:DI 2 "register_operand" "r") + (const_int 0)]) + (match_operand:DF 3 "register_operand" "e") + (match_operand:DF 4 "register_operand" "0")))] + "TARGET_ARCH64 && TARGET_FPU" + "fmovrd%D1\t%2, %3, %0" + [(set_attr "type" "fpcrmove") + (set_attr "fptype" "double")]) + +(define_insn "*movtf_cc_hq_v9" + [(set (match_operand:TF 0 "register_operand" "=e") + (if_then_else:TF (match_operator 1 "icc_or_fcc_comparison_operator" + [(match_operand 2 "icc_or_fcc_register_operand" "X") + (const_int 0)]) + (match_operand:TF 3 "register_operand" "e") + (match_operand:TF 4 "register_operand" "0")))] + "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" + "fmovq%C1\t%x2, %3, %0" + [(set_attr "type" "fpcmove")]) + +(define_insn "*movtf_cc_reg_hq_sp64" + [(set (match_operand:TF 0 "register_operand" "=e") + (if_then_else:TF (match_operator 1 "v9_register_comparison_operator" + [(match_operand:DI 2 "register_operand" "r") + (const_int 0)]) + (match_operand:TF 3 "register_operand" "e") + (match_operand:TF 4 "register_operand" "0")))] + "TARGET_ARCH64 && TARGET_FPU && TARGET_HARD_QUAD" + "fmovrq%D1\t%2, %3, %0" + [(set_attr "type" "fpcrmove")]) + +(define_insn_and_split "*movtf_cc_v9" + [(set (match_operand:TF 0 "register_operand" "=e") + (if_then_else:TF (match_operator 1 "icc_or_fcc_comparison_operator" + [(match_operand 2 "icc_or_fcc_register_operand" "X") + (const_int 0)]) + (match_operand:TF 3 "register_operand" "e") + (match_operand:TF 4 "register_operand" "0")))] + "TARGET_V9 && TARGET_FPU && !TARGET_HARD_QUAD" + "#" + "&& reload_completed" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx set_srca = operands[3]; + rtx dest1, dest2; + rtx srca1, srca2; + + dest1 = gen_df_reg (set_dest, 0); + dest2 = gen_df_reg (set_dest, 1); + srca1 = gen_df_reg (set_srca, 0); + srca2 = gen_df_reg (set_srca, 1); + + if (reg_overlap_mentioned_p (dest1, srca2)) + { + emit_insn (gen_movdf_cc_v9 (dest2, operands[1], operands[2], + srca2, dest2)); + emit_insn (gen_movdf_cc_v9 (dest1, operands[1], operands[2], + srca1, dest1)); + } + else + { + emit_insn (gen_movdf_cc_v9 (dest1, operands[1], operands[2], + srca1, dest1)); + emit_insn (gen_movdf_cc_v9 (dest2, operands[1], operands[2], + srca2, dest2)); + } + DONE; +} + [(set_attr "length" "2")]) + +(define_insn_and_split "*movtf_cc_reg_sp64" + [(set (match_operand:TF 0 "register_operand" "=e") + (if_then_else:TF (match_operator 1 "v9_register_comparison_operator" + [(match_operand:DI 2 "register_operand" "r") + (const_int 0)]) + (match_operand:TF 3 "register_operand" "e") + (match_operand:TF 4 "register_operand" "0")))] + "TARGET_ARCH64 && TARGET_FPU && !TARGET_HARD_QUAD" + "#" + "&& reload_completed" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx set_srca = operands[3]; + rtx dest1, dest2; + rtx srca1, srca2; + + dest1 = gen_df_reg (set_dest, 0); + dest2 = gen_df_reg (set_dest, 1); + srca1 = gen_df_reg (set_srca, 0); + srca2 = gen_df_reg (set_srca, 1); + + if (reg_overlap_mentioned_p (dest1, srca2)) + { + emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], + srca2, dest2)); + emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], + srca1, dest1)); + } + else + { + emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], + srca1, dest1)); + emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], + srca2, dest2)); + } + DONE; +} + [(set_attr "length" "2")]) + + +;; Zero-extension instructions + +;; These patterns originally accepted general_operands, however, slightly +;; better code is generated by only accepting register_operands, and then +;; letting combine generate the ldu[hb] insns. + +(define_expand "zero_extendhisi2" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extend:SI (match_operand:HI 1 "register_operand" "")))] + "" +{ + rtx temp = gen_reg_rtx (SImode); + rtx shift_16 = GEN_INT (16); + int op1_subbyte = 0; + + if (GET_CODE (operand1) == SUBREG) + { + op1_subbyte = SUBREG_BYTE (operand1); + op1_subbyte /= GET_MODE_SIZE (SImode); + op1_subbyte *= GET_MODE_SIZE (SImode); + operand1 = XEXP (operand1, 0); + } + + emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), + shift_16)); + emit_insn (gen_lshrsi3 (operand0, temp, shift_16)); + DONE; +}) + +(define_insn "*zero_extendhisi2_insn" + [(set (match_operand:SI 0 "register_operand" "=r") + (zero_extend:SI (match_operand:HI 1 "memory_operand" "m")))] + "" + "lduh\t%1, %0" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +(define_expand "zero_extendqihi2" + [(set (match_operand:HI 0 "register_operand" "") + (zero_extend:HI (match_operand:QI 1 "register_operand" "")))] + "" + "") + +(define_insn "*zero_extendqihi2_insn" + [(set (match_operand:HI 0 "register_operand" "=r,r") + (zero_extend:HI (match_operand:QI 1 "input_operand" "r,m")))] + "GET_CODE (operands[1]) != CONST_INT" + "@ + and\t%1, 0xff, %0 + ldub\t%1, %0" + [(set_attr "type" "*,load") + (set_attr "subtype" "*,regular") + (set_attr "us3load_type" "*,3cycle")]) + +(define_expand "zero_extendqisi2" + [(set (match_operand:SI 0 "register_operand" "") + (zero_extend:SI (match_operand:QI 1 "register_operand" "")))] + "" + "") + +(define_insn "*zero_extendqisi2_insn" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (zero_extend:SI (match_operand:QI 1 "input_operand" "r,m")))] + "GET_CODE (operands[1]) != CONST_INT" + "@ + and\t%1, 0xff, %0 + ldub\t%1, %0" + [(set_attr "type" "*,load") + (set_attr "subtype" "*,regular") + (set_attr "us3load_type" "*,3cycle")]) + +(define_expand "zero_extendqidi2" + [(set (match_operand:DI 0 "register_operand" "") + (zero_extend:DI (match_operand:QI 1 "register_operand" "")))] + "TARGET_ARCH64" + "") + +(define_insn "*zero_extendqidi2_insn" + [(set (match_operand:DI 0 "register_operand" "=r,r") + (zero_extend:DI (match_operand:QI 1 "input_operand" "r,m")))] + "TARGET_ARCH64 && GET_CODE (operands[1]) != CONST_INT" + "@ + and\t%1, 0xff, %0 + ldub\t%1, %0" + [(set_attr "type" "*,load") + (set_attr "subtype" "*,regular") + (set_attr "us3load_type" "*,3cycle")]) + +(define_expand "zero_extendhidi2" + [(set (match_operand:DI 0 "register_operand" "") + (zero_extend:DI (match_operand:HI 1 "register_operand" "")))] + "TARGET_ARCH64" +{ + rtx temp = gen_reg_rtx (DImode); + rtx shift_48 = GEN_INT (48); + int op1_subbyte = 0; + + if (GET_CODE (operand1) == SUBREG) + { + op1_subbyte = SUBREG_BYTE (operand1); + op1_subbyte /= GET_MODE_SIZE (DImode); + op1_subbyte *= GET_MODE_SIZE (DImode); + operand1 = XEXP (operand1, 0); + } + + emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), + shift_48)); + emit_insn (gen_lshrdi3 (operand0, temp, shift_48)); + DONE; +}) + +(define_insn "*zero_extendhidi2_insn" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI (match_operand:HI 1 "memory_operand" "m")))] + "TARGET_ARCH64" + "lduh\t%1, %0" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +;; ??? Write truncdisi pattern using sra? + +(define_expand "zero_extendsidi2" + [(set (match_operand:DI 0 "register_operand" "") + (zero_extend:DI (match_operand:SI 1 "register_operand" "")))] + "" + "") + +(define_insn "*zero_extendsidi2_insn_sp64" + [(set (match_operand:DI 0 "register_operand" "=r,r,r") + (zero_extend:DI (match_operand:SI 1 "input_operand" "r,m,*f")))] + "TARGET_ARCH64 + && GET_CODE (operands[1]) != CONST_INT" + "@ + srl\t%1, 0, %0 + lduw\t%1, %0 + movstouw\t%1, %0" + [(set_attr "type" "shift,load,vismv") + (set_attr "subtype" "*,regular,movstouw") + (set_attr "cpu_feature" "*,*,vis3")]) + +(define_insn_and_split "*zero_extendsidi2_insn_sp32" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI (match_operand:SI 1 "register_operand" "r")))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(set (match_dup 2) (match_dup 1)) + (set (match_dup 3) (const_int 0))] + "operands[2] = gen_lowpart (SImode, operands[0]); + operands[3] = gen_highpart (SImode, operands[0]);" + [(set_attr "length" "2")]) + +;; Simplify comparisons of extended values. + +(define_insn "*cmp_zero_extendqisi2" + [(set (reg:CC CC_REG) + (compare:CC (zero_extend:SI (match_operand:QI 0 "register_operand" "r")) + (const_int 0)))] + "" + "andcc\t%0, 0xff, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_zero_qi" + [(set (reg:CC CC_REG) + (compare:CC (match_operand:QI 0 "register_operand" "r") + (const_int 0)))] + "" + "andcc\t%0, 0xff, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_zero_extendqisi2_set" + [(set (reg:CC CC_REG) + (compare:CC (zero_extend:SI (match_operand:QI 1 "register_operand" "r")) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (zero_extend:SI (match_dup 1)))] + "" + "andcc\t%1, 0xff, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_zero_extendqisi2_andcc_set" + [(set (reg:CC CC_REG) + (compare:CC (and:SI (match_operand:SI 1 "register_operand" "r") + (const_int 255)) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (zero_extend:SI (subreg:QI (match_dup 1) 0)))] + "" + "andcc\t%1, 0xff, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_zero_extendqidi2" + [(set (reg:CCX CC_REG) + (compare:CCX (zero_extend:DI (match_operand:QI 0 "register_operand" "r")) + (const_int 0)))] + "TARGET_ARCH64" + "andcc\t%0, 0xff, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_zero_qi_sp64" + [(set (reg:CCX CC_REG) + (compare:CCX (match_operand:QI 0 "register_operand" "r") + (const_int 0)))] + "TARGET_ARCH64" + "andcc\t%0, 0xff, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_zero_extendqidi2_set" + [(set (reg:CCX CC_REG) + (compare:CCX (zero_extend:DI (match_operand:QI 1 "register_operand" "r")) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI (match_dup 1)))] + "TARGET_ARCH64" + "andcc\t%1, 0xff, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_zero_extendqidi2_andcc_set" + [(set (reg:CCX CC_REG) + (compare:CCX (and:DI (match_operand:DI 1 "register_operand" "r") + (const_int 255)) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI (subreg:QI (match_dup 1) 0)))] + "TARGET_ARCH64" + "andcc\t%1, 0xff, %0" + [(set_attr "type" "compare")]) + +;; Similarly, handle {SI,DI}->QI mode truncation followed by a compare. + +(define_insn "*cmp_siqi_trunc" + [(set (reg:CC CC_REG) + (compare:CC (subreg:QI (match_operand:SI 0 "register_operand" "r") 3) + (const_int 0)))] + "" + "andcc\t%0, 0xff, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_siqi_trunc_set" + [(set (reg:CC CC_REG) + (compare:CC (subreg:QI (match_operand:SI 1 "register_operand" "r") 3) + (const_int 0))) + (set (match_operand:QI 0 "register_operand" "=r") + (subreg:QI (match_dup 1) 3))] + "" + "andcc\t%1, 0xff, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_diqi_trunc" + [(set (reg:CC CC_REG) + (compare:CC (subreg:QI (match_operand:DI 0 "register_operand" "r") 7) + (const_int 0)))] + "TARGET_ARCH64" + "andcc\t%0, 0xff, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_diqi_trunc_set" + [(set (reg:CC CC_REG) + (compare:CC (subreg:QI (match_operand:DI 1 "register_operand" "r") 7) + (const_int 0))) + (set (match_operand:QI 0 "register_operand" "=r") + (subreg:QI (match_dup 1) 7))] + "TARGET_ARCH64" + "andcc\t%1, 0xff, %0" + [(set_attr "type" "compare")]) + + +;; Sign-extension instructions + +;; These patterns originally accepted general_operands, however, slightly +;; better code is generated by only accepting register_operands, and then +;; letting combine generate the lds[hb] insns. + +(define_expand "extendhisi2" + [(set (match_operand:SI 0 "register_operand" "") + (sign_extend:SI (match_operand:HI 1 "register_operand" "")))] + "" +{ + rtx temp = gen_reg_rtx (SImode); + rtx shift_16 = GEN_INT (16); + int op1_subbyte = 0; + + if (GET_CODE (operand1) == SUBREG) + { + op1_subbyte = SUBREG_BYTE (operand1); + op1_subbyte /= GET_MODE_SIZE (SImode); + op1_subbyte *= GET_MODE_SIZE (SImode); + operand1 = XEXP (operand1, 0); + } + + emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), + shift_16)); + emit_insn (gen_ashrsi3 (operand0, temp, shift_16)); + DONE; +}) + +(define_insn "*sign_extendhisi2_insn" + [(set (match_operand:SI 0 "register_operand" "=r") + (sign_extend:SI (match_operand:HI 1 "memory_operand" "m")))] + "" + "ldsh\t%1, %0" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_expand "extendqihi2" + [(set (match_operand:HI 0 "register_operand" "") + (sign_extend:HI (match_operand:QI 1 "register_operand" "")))] + "" +{ + rtx temp = gen_reg_rtx (SImode); + rtx shift_24 = GEN_INT (24); + int op1_subbyte = 0; + int op0_subbyte = 0; + + if (GET_CODE (operand1) == SUBREG) + { + op1_subbyte = SUBREG_BYTE (operand1); + op1_subbyte /= GET_MODE_SIZE (SImode); + op1_subbyte *= GET_MODE_SIZE (SImode); + operand1 = XEXP (operand1, 0); + } + if (GET_CODE (operand0) == SUBREG) + { + op0_subbyte = SUBREG_BYTE (operand0); + op0_subbyte /= GET_MODE_SIZE (SImode); + op0_subbyte *= GET_MODE_SIZE (SImode); + operand0 = XEXP (operand0, 0); + } + emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), + shift_24)); + if (GET_MODE (operand0) != SImode) + operand0 = gen_rtx_SUBREG (SImode, operand0, op0_subbyte); + emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); + DONE; +}) + +(define_insn "*sign_extendqihi2_insn" + [(set (match_operand:HI 0 "register_operand" "=r") + (sign_extend:HI (match_operand:QI 1 "memory_operand" "m")))] + "" + "ldsb\t%1, %0" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_expand "extendqisi2" + [(set (match_operand:SI 0 "register_operand" "") + (sign_extend:SI (match_operand:QI 1 "register_operand" "")))] + "" +{ + rtx temp = gen_reg_rtx (SImode); + rtx shift_24 = GEN_INT (24); + int op1_subbyte = 0; + + if (GET_CODE (operand1) == SUBREG) + { + op1_subbyte = SUBREG_BYTE (operand1); + op1_subbyte /= GET_MODE_SIZE (SImode); + op1_subbyte *= GET_MODE_SIZE (SImode); + operand1 = XEXP (operand1, 0); + } + + emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), + shift_24)); + emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); + DONE; +}) + +(define_insn "*sign_extendqisi2_insn" + [(set (match_operand:SI 0 "register_operand" "=r") + (sign_extend:SI (match_operand:QI 1 "memory_operand" "m")))] + "" + "ldsb\t%1, %0" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_expand "extendqidi2" + [(set (match_operand:DI 0 "register_operand" "") + (sign_extend:DI (match_operand:QI 1 "register_operand" "")))] + "TARGET_ARCH64" +{ + rtx temp = gen_reg_rtx (DImode); + rtx shift_56 = GEN_INT (56); + int op1_subbyte = 0; + + if (GET_CODE (operand1) == SUBREG) + { + op1_subbyte = SUBREG_BYTE (operand1); + op1_subbyte /= GET_MODE_SIZE (DImode); + op1_subbyte *= GET_MODE_SIZE (DImode); + operand1 = XEXP (operand1, 0); + } + + emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), + shift_56)); + emit_insn (gen_ashrdi3 (operand0, temp, shift_56)); + DONE; +}) + +(define_insn "*sign_extendqidi2_insn" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extend:DI (match_operand:QI 1 "memory_operand" "m")))] + "TARGET_ARCH64" + "ldsb\t%1, %0" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_expand "extendhidi2" + [(set (match_operand:DI 0 "register_operand" "") + (sign_extend:DI (match_operand:HI 1 "register_operand" "")))] + "TARGET_ARCH64" +{ + rtx temp = gen_reg_rtx (DImode); + rtx shift_48 = GEN_INT (48); + int op1_subbyte = 0; + + if (GET_CODE (operand1) == SUBREG) + { + op1_subbyte = SUBREG_BYTE (operand1); + op1_subbyte /= GET_MODE_SIZE (DImode); + op1_subbyte *= GET_MODE_SIZE (DImode); + operand1 = XEXP (operand1, 0); + } + + emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), + shift_48)); + emit_insn (gen_ashrdi3 (operand0, temp, shift_48)); + DONE; +}) + +(define_insn "*sign_extendhidi2_insn" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extend:DI (match_operand:HI 1 "memory_operand" "m")))] + "TARGET_ARCH64" + "ldsh\t%1, %0" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_expand "extendsidi2" + [(set (match_operand:DI 0 "register_operand" "") + (sign_extend:DI (match_operand:SI 1 "register_operand" "")))] + "TARGET_ARCH64" + "") + +(define_insn "*sign_extendsidi2_insn" + [(set (match_operand:DI 0 "register_operand" "=r,r,r") + (sign_extend:DI (match_operand:SI 1 "input_operand" "r,m,*f")))] + "TARGET_ARCH64" + "@ + sra\t%1, 0, %0 + ldsw\t%1, %0 + movstosw\t%1, %0" + [(set_attr "type" "shift,sload,vismv") + (set_attr "us3load_type" "*,3cycle,*") + (set_attr "cpu_feature" "*,*,vis3")]) + + +;; Special pattern for optimizing bit-field compares. This is needed +;; because combine uses this as a canonical form. + +(define_insn "*cmp_zero_extract" + [(set (reg:CC CC_REG) + (compare:CC + (zero_extract:SI (match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "small_int_operand" "I") + (match_operand:SI 2 "small_int_operand" "I")) + (const_int 0)))] + "INTVAL (operands[2]) > 19" +{ + int len = INTVAL (operands[1]); + int pos = 32 - INTVAL (operands[2]) - len; + HOST_WIDE_INT mask = ((1 << len) - 1) << pos; + operands[1] = GEN_INT (mask); + return "andcc\t%0, %1, %%g0"; +} + [(set_attr "type" "compare")]) + +(define_insn "*cmp_zero_extract_sp64" + [(set (reg:CCX CC_REG) + (compare:CCX + (zero_extract:DI (match_operand:DI 0 "register_operand" "r") + (match_operand:SI 1 "small_int_operand" "I") + (match_operand:SI 2 "small_int_operand" "I")) + (const_int 0)))] + "TARGET_ARCH64 && INTVAL (operands[2]) > 51" +{ + int len = INTVAL (operands[1]); + int pos = 64 - INTVAL (operands[2]) - len; + HOST_WIDE_INT mask = (((unsigned HOST_WIDE_INT) 1 << len) - 1) << pos; + operands[1] = GEN_INT (mask); + return "andcc\t%0, %1, %%g0"; +} + [(set_attr "type" "compare")]) + + +;; Conversions between float, double and long double. + +(define_insn "extendsfdf2" + [(set (match_operand:DF 0 "register_operand" "=e") + (float_extend:DF (match_operand:SF 1 "register_operand" "f")))] + "TARGET_FPU" + "fstod\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_expand "extendsftf2" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (float_extend:TF (match_operand:SF 1 "register_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_cvt (FLOAT_EXTEND, operands); DONE;") + +(define_insn "*extendsftf2_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (float_extend:TF (match_operand:SF 1 "register_operand" "f")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fstoq\t%1, %0" + [(set_attr "type" "fp")]) + +(define_expand "extenddftf2" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (float_extend:TF (match_operand:DF 1 "register_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_cvt (FLOAT_EXTEND, operands); DONE;") + +(define_insn "*extenddftf2_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (float_extend:TF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fdtoq\t%1, %0" + [(set_attr "type" "fp")]) + +(define_insn "truncdfsf2" + [(set (match_operand:SF 0 "register_operand" "=f") + (float_truncate:SF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU" + "fdtos\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double") + (set_attr "fptype_ut699" "single")]) + +(define_expand "trunctfsf2" + [(set (match_operand:SF 0 "register_operand" "") + (float_truncate:SF (match_operand:TF 1 "general_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_cvt (FLOAT_TRUNCATE, operands); DONE;") + +(define_insn "*trunctfsf2_hq" + [(set (match_operand:SF 0 "register_operand" "=f") + (float_truncate:SF (match_operand:TF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fqtos\t%1, %0" + [(set_attr "type" "fp")]) + +(define_expand "trunctfdf2" + [(set (match_operand:DF 0 "register_operand" "") + (float_truncate:DF (match_operand:TF 1 "general_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_cvt (FLOAT_TRUNCATE, operands); DONE;") + +(define_insn "*trunctfdf2_hq" + [(set (match_operand:DF 0 "register_operand" "=e") + (float_truncate:DF (match_operand:TF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fqtod\t%1, %0" + [(set_attr "type" "fp")]) + + +;; Conversion between fixed point and floating point. + +(define_insn "floatsisf2" + [(set (match_operand:SF 0 "register_operand" "=f") + (float:SF (match_operand:SI 1 "register_operand" "f")))] + "TARGET_FPU" + "fitos\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "single")]) + +(define_insn "floatsidf2" + [(set (match_operand:DF 0 "register_operand" "=e") + (float:DF (match_operand:SI 1 "register_operand" "f")))] + "TARGET_FPU" + "fitod\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_expand "floatsitf2" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (float:TF (match_operand:SI 1 "register_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_cvt (FLOAT, operands); DONE;") + +(define_insn "*floatsitf2_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (float:TF (match_operand:SI 1 "register_operand" "f")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fitoq\t%1, %0" + [(set_attr "type" "fp")]) + +(define_expand "floatunssitf2" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (unsigned_float:TF (match_operand:SI 1 "register_operand" "")))] + "TARGET_FPU && TARGET_ARCH64 && !TARGET_HARD_QUAD" + "emit_tfmode_cvt (UNSIGNED_FLOAT, operands); DONE;") + +;; Now the same for 64 bit sources. + +(define_insn "floatdisf2" + [(set (match_operand:SF 0 "register_operand" "=f") + (float:SF (match_operand:DI 1 "register_operand" "e")))] + "TARGET_V9 && TARGET_FPU" + "fxtos\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_expand "floatunsdisf2" + [(use (match_operand:SF 0 "register_operand" "")) + (use (match_operand:DI 1 "general_operand" ""))] + "TARGET_ARCH64 && TARGET_FPU" + "sparc_emit_floatunsdi (operands, SFmode); DONE;") + +(define_insn "floatdidf2" + [(set (match_operand:DF 0 "register_operand" "=e") + (float:DF (match_operand:DI 1 "register_operand" "e")))] + "TARGET_V9 && TARGET_FPU" + "fxtod\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_expand "floatunsdidf2" + [(use (match_operand:DF 0 "register_operand" "")) + (use (match_operand:DI 1 "general_operand" ""))] + "TARGET_ARCH64 && TARGET_FPU" + "sparc_emit_floatunsdi (operands, DFmode); DONE;") + +(define_expand "floatditf2" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (float:TF (match_operand:DI 1 "register_operand" "")))] + "TARGET_FPU && TARGET_V9 && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_cvt (FLOAT, operands); DONE;") + +(define_insn "*floatditf2_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (float:TF (match_operand:DI 1 "register_operand" "e")))] + "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" + "fxtoq\t%1, %0" + [(set_attr "type" "fp")]) + +(define_expand "floatunsditf2" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (unsigned_float:TF (match_operand:DI 1 "register_operand" "")))] + "TARGET_FPU && TARGET_ARCH64 && !TARGET_HARD_QUAD" + "emit_tfmode_cvt (UNSIGNED_FLOAT, operands); DONE;") + +;; Convert a float to an actual integer. +;; Truncation is performed as part of the conversion. + +(define_insn "fix_truncsfsi2" + [(set (match_operand:SI 0 "register_operand" "=f") + (fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] + "TARGET_FPU" + "fstoi\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "single")]) + +(define_insn "fix_truncdfsi2" + [(set (match_operand:SI 0 "register_operand" "=f") + (fix:SI (fix:DF (match_operand:DF 1 "register_operand" "e"))))] + "TARGET_FPU" + "fdtoi\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double") + (set_attr "fptype_ut699" "single")]) + +(define_expand "fix_trunctfsi2" + [(set (match_operand:SI 0 "register_operand" "") + (fix:SI (match_operand:TF 1 "general_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_cvt (FIX, operands); DONE;") + +(define_insn "*fix_trunctfsi2_hq" + [(set (match_operand:SI 0 "register_operand" "=f") + (fix:SI (match_operand:TF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fqtoi\t%1, %0" + [(set_attr "type" "fp")]) + +(define_expand "fixuns_trunctfsi2" + [(set (match_operand:SI 0 "register_operand" "") + (unsigned_fix:SI (match_operand:TF 1 "general_operand" "")))] + "TARGET_FPU && TARGET_ARCH64 && !TARGET_HARD_QUAD" + "emit_tfmode_cvt (UNSIGNED_FIX, operands); DONE;") + +;; Now the same, for V9 targets + +(define_insn "fix_truncsfdi2" + [(set (match_operand:DI 0 "register_operand" "=e") + (fix:DI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] + "TARGET_V9 && TARGET_FPU" + "fstox\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_expand "fixuns_truncsfdi2" + [(use (match_operand:DI 0 "register_operand" "")) + (use (match_operand:SF 1 "general_operand" ""))] + "TARGET_ARCH64 && TARGET_FPU" + "sparc_emit_fixunsdi (operands, SFmode); DONE;") + +(define_insn "fix_truncdfdi2" + [(set (match_operand:DI 0 "register_operand" "=e") + (fix:DI (fix:DF (match_operand:DF 1 "register_operand" "e"))))] + "TARGET_V9 && TARGET_FPU" + "fdtox\t%1, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_expand "fixuns_truncdfdi2" + [(use (match_operand:DI 0 "register_operand" "")) + (use (match_operand:DF 1 "general_operand" ""))] + "TARGET_ARCH64 && TARGET_FPU" + "sparc_emit_fixunsdi (operands, DFmode); DONE;") + +(define_expand "fix_trunctfdi2" + [(set (match_operand:DI 0 "register_operand" "") + (fix:DI (match_operand:TF 1 "general_operand" "")))] + "TARGET_V9 && TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_cvt (FIX, operands); DONE;") + +(define_insn "*fix_trunctfdi2_hq" + [(set (match_operand:DI 0 "register_operand" "=e") + (fix:DI (match_operand:TF 1 "register_operand" "e")))] + "TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD" + "fqtox\t%1, %0" + [(set_attr "type" "fp")]) + +(define_expand "fixuns_trunctfdi2" + [(set (match_operand:DI 0 "register_operand" "") + (unsigned_fix:DI (match_operand:TF 1 "general_operand" "")))] + "TARGET_FPU && TARGET_ARCH64 && !TARGET_HARD_QUAD" + "emit_tfmode_cvt (UNSIGNED_FIX, operands); DONE;") + + +;; Integer addition/subtraction instructions. + +(define_expand "adddi3" + [(set (match_operand:DI 0 "register_operand" "") + (plus:DI (match_operand:DI 1 "register_operand" "") + (match_operand:DI 2 "arith_double_add_operand" "")))] + "" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_adddi3_sp32 (operands[0], operands[1], operands[2])); + DONE; + } +}) + +;; Turning an add/sub instruction into the other changes the Carry flag +;; so the 4096 trick cannot be used for operations in CCXCmode. + +(define_expand "uaddvdi4" + [(parallel [(set (reg:CCXC CC_REG) + (compare:CCXC (plus:DI (match_operand:DI 1 "register_operand") + (match_operand:DI 2 "arith_double_operand")) + (match_dup 1))) + (set (match_operand:DI 0 "register_operand") + (plus:DI (match_dup 1) (match_dup 2)))]) + (set (pc) (if_then_else (ltu (reg:CCXC CC_REG) (const_int 0)) + (label_ref (match_operand 3)) + (pc)))] + "" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_uaddvdi4_sp32 (operands[0], operands[1], operands[2])); + rtx x = gen_rtx_LTU (VOIDmode, gen_rtx_REG (CCCmode, SPARC_ICC_REG), + const0_rtx); + emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[3])); + DONE; + } +}) + +;; Turning an add/sub instruction into the other does not change the Overflow +;; flag so the 4096 trick can be used for operations in CCXVmode. + +(define_expand "addvdi4" + [(parallel [(set (reg:CCXV CC_REG) + (compare:CCXV (plus:DI (match_operand:DI 1 "register_operand") + (match_operand:DI 2 "arith_double_add_operand")) + (unspec:DI [(match_dup 1) (match_dup 2)] + UNSPEC_ADDV))) + (set (match_operand:DI 0 "register_operand") + (plus:DI (match_dup 1) (match_dup 2)))]) + (set (pc) (if_then_else (ne (reg:CCXV CC_REG) (const_int 0)) + (label_ref (match_operand 3)) + (pc)))] + "" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_addvdi4_sp32 (operands[0], operands[1], operands[2])); + rtx x = gen_rtx_NE (VOIDmode, gen_rtx_REG (CCVmode, SPARC_ICC_REG), + const0_rtx); + emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[3])); + DONE; + } +}) + +(define_insn_and_split "adddi3_sp32" + [(set (match_operand:DI 0 "register_operand" "=&r") + (plus:DI (match_operand:DI 1 "register_operand" "%r") + (match_operand:DI 2 "arith_double_operand" "rHI"))) + (clobber (reg:CC CC_REG))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (plus:SI (match_dup 4) (match_dup 5)) + (match_dup 4))) + (set (match_dup 3) + (plus:SI (match_dup 4) (match_dup 5)))]) + (set (match_dup 6) + (plus:SI (plus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CCC CC_REG) (const_int 0))))] +{ + operands[3] = gen_lowpart (SImode, operands[0]); + operands[4] = gen_lowpart (SImode, operands[1]); + operands[5] = gen_lowpart (SImode, operands[2]); + operands[6] = gen_highpart (SImode, operands[0]); + operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); +} + [(set_attr "length" "2")]) + +(define_insn_and_split "uaddvdi4_sp32" + [(set (reg:CCC CC_REG) + (compare:CCC (plus:DI (match_operand:DI 1 "register_operand" "%r") + (match_operand:DI 2 "arith_double_operand" "rHI")) + (match_dup 1))) + (set (match_operand:DI 0 "register_operand" "=&r") + (plus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (plus:SI (match_dup 4) (match_dup 5)) + (match_dup 4))) + (set (match_dup 3) + (plus:SI (match_dup 4) (match_dup 5)))]) + (parallel [(set (reg:CCC CC_REG) + (compare:CCC (zero_extend:DI + (plus:SI (plus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CCC CC_REG) + (const_int 0)))) + (plus:DI (plus:DI (zero_extend:DI (match_dup 7)) + (zero_extend:DI (match_dup 8))) + (ltu:DI (reg:CCC CC_REG) + (const_int 0))))) + (set (match_dup 6) + (plus:SI (plus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CCC CC_REG) + (const_int 0))))])] +{ + operands[3] = gen_lowpart (SImode, operands[0]); + operands[4] = gen_lowpart (SImode, operands[1]); + operands[5] = gen_lowpart (SImode, operands[2]); + operands[6] = gen_highpart (SImode, operands[0]); + operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); +} + [(set_attr "length" "2")]) + +(define_insn_and_split "addvdi4_sp32" + [(set (reg:CCV CC_REG) + (compare:CCV (plus:DI (match_operand:DI 1 "register_operand" "%r") + (match_operand:DI 2 "arith_double_operand" "rHI")) + (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_ADDV))) + (set (match_operand:DI 0 "register_operand" "=&r") + (plus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (plus:SI (match_dup 4) (match_dup 5)) + (match_dup 4))) + (set (match_dup 3) + (plus:SI (match_dup 4) (match_dup 5)))]) + (parallel [(set (reg:CCV CC_REG) + (compare:CCV (plus:SI (plus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CCC CC_REG) + (const_int 0))) + (unspec:SI [(plus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CCC CC_REG) + (const_int 0))] + UNSPEC_ADDV))) + (set (match_dup 6) + (plus:SI (plus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CCC CC_REG) (const_int 0))))])] +{ + operands[3] = gen_lowpart (SImode, operands[0]); + operands[4] = gen_lowpart (SImode, operands[1]); + operands[5] = gen_lowpart (SImode, operands[2]); + operands[6] = gen_highpart (SImode, operands[0]); + operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); +} + [(set_attr "length" "2")]) + +(define_insn_and_split "*addx_extend_sp32" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI (plus:SI (plus:SI + (match_operand:SI 1 "register_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")) + (ltu:SI (reg:CCC CC_REG) (const_int 0)))))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(set (match_dup 3) (plus:SI (plus:SI (match_dup 1) (match_dup 2)) + (ltu:SI (reg:CCC CC_REG) (const_int 0)))) + (set (match_dup 4) (const_int 0))] + "operands[3] = gen_lowpart (SImode, operands[0]); + operands[4] = gen_highpart (SImode, operands[0]);" + [(set_attr "length" "2")]) + +(define_insn_and_split "*adddi3_extend_sp32" + [(set (match_operand:DI 0 "register_operand" "=&r") + (plus:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) + (match_operand:DI 2 "register_operand" "r"))) + (clobber (reg:CC CC_REG))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (plus:SI (match_dup 3) (match_dup 1)) + (match_dup 3))) + (set (match_dup 5) (plus:SI (match_dup 3) (match_dup 1)))]) + (set (match_dup 6) + (plus:SI (plus:SI (match_dup 4) (const_int 0)) + (ltu:SI (reg:CCC CC_REG) (const_int 0))))] + "operands[3] = gen_lowpart (SImode, operands[2]); + operands[4] = gen_highpart (SImode, operands[2]); + operands[5] = gen_lowpart (SImode, operands[0]); + operands[6] = gen_highpart (SImode, operands[0]);" + [(set_attr "length" "2")]) + +(define_insn "*adddi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r,r") + (plus:DI (match_operand:DI 1 "register_operand" "%r,r") + (match_operand:DI 2 "arith_add_operand" "rI,O")))] + "TARGET_ARCH64" + "@ + add\t%1, %2, %0 + sub\t%1, -%2, %0") + +(define_insn "addsi3" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (plus:SI (match_operand:SI 1 "register_operand" "%r,r") + (match_operand:SI 2 "arith_add_operand" "rI,O")))] + "" + "@ + add\t%1, %2, %0 + sub\t%1, -%2, %0") + +;; Turning an add/sub instruction into the other changes the Carry flag +;; so the 4096 trick cannot be used for operations in CCCmode. + +(define_expand "uaddvsi4" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (plus:SI (match_operand:SI 1 "register_operand") + (match_operand:SI 2 "arith_operand")) + (match_dup 1))) + (set (match_operand:SI 0 "register_operand") + (plus:SI (match_dup 1) (match_dup 2)))]) + (set (pc) (if_then_else (ltu (reg:CCC CC_REG) (const_int 0)) + (label_ref (match_operand 3)) + (pc)))] + "") + +;; Turning an add/sub instruction into the other does not change the Overflow +;; flag so the 4096 trick can be used for operations in CCVmode. + +(define_expand "addvsi4" + [(parallel [(set (reg:CCV CC_REG) + (compare:CCV (plus:SI (match_operand:SI 1 "register_operand") + (match_operand:SI 2 "arith_add_operand")) + (unspec:SI [(match_dup 1) (match_dup 2)] + UNSPEC_ADDV))) + (set (match_operand:SI 0 "register_operand") + (plus:SI (match_dup 1) (match_dup 2)))]) + (set (pc) (if_then_else (ne (reg:CCV CC_REG) (const_int 0)) + (label_ref (match_operand 3)) + (pc)))] + "") + +(define_insn "*cmp_ccnz_plus" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (plus:SI (match_operand:SI 0 "register_operand" "%r") + (match_operand:SI 1 "arith_operand" "rI")) + (const_int 0)))] + "" + "addcc\t%0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxnz_plus" + [(set (reg:CCXNZ CC_REG) + (compare:CCXNZ (plus:DI (match_operand:DI 0 "register_operand" "%r") + (match_operand:DI 1 "arith_operand" "rI")) + (const_int 0)))] + "TARGET_ARCH64" + "addcc\t%0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccnz_plus_set" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (plus:SI (match_operand:SI 1 "register_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (plus:SI (match_dup 1) (match_dup 2)))] + "" + "addcc\t%1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxnz_plus_set" + [(set (reg:CCXNZ CC_REG) + (compare:CCXNZ (plus:DI (match_operand:DI 1 "register_operand" "%r") + (match_operand:DI 2 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH64" + "addcc\t%1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccc_plus" + [(set (reg:CCC CC_REG) + (compare:CCC (plus:SI (match_operand:SI 0 "register_operand" "%r") + (match_operand:SI 1 "arith_operand" "rI")) + (match_dup 0)))] + "" + "addcc\t%0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxc_plus" + [(set (reg:CCXC CC_REG) + (compare:CCXC (plus:DI (match_operand:DI 0 "register_operand" "%r") + (match_operand:DI 1 "arith_operand" "rI")) + (match_dup 0)))] + "TARGET_ARCH64" + "addcc\t%0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccc_plus_set" + [(set (reg:CCC CC_REG) + (compare:CCC (plus:SI (match_operand:SI 1 "register_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")) + (match_dup 1))) + (set (match_operand:SI 0 "register_operand" "=r") + (plus:SI (match_dup 1) (match_dup 2)))] + "" + "addcc\t%1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxc_plus_set" + [(set (reg:CCXC CC_REG) + (compare:CCXC (plus:DI (match_operand:DI 1 "register_operand" "%r") + (match_operand:DI 2 "arith_operand" "rI")) + (match_dup 1))) + (set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH64" + "addcc\t%1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccc_plus_sltu_set" + [(set (reg:CCC CC_REG) + (compare:CCC (zero_extend:DI + (plus:SI + (plus:SI (match_operand:SI 1 "register_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")) + (ltu:SI (reg:CCC CC_REG) (const_int 0)))) + (plus:DI (plus:DI (zero_extend:DI (match_dup 1)) + (zero_extend:DI (match_dup 2))) + (ltu:DI (reg:CCC CC_REG) (const_int 0))))) + (set (match_operand:SI 0 "register_operand" "=r") + (plus:SI (plus:SI (match_dup 1) (match_dup 2)) + (ltu:SI (reg:CCC CC_REG) (const_int 0))))] + "" + "addxcc\t%1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_plus" + [(set (reg:CCV CC_REG) + (compare:CCV (plus:SI (match_operand:SI 0 "register_operand" "%r,r") + (match_operand:SI 1 "arith_add_operand" "rI,O")) + (unspec:SI [(match_dup 0) (match_dup 1)] UNSPEC_ADDV)))] + "" + "@ + addcc\t%0, %1, %%g0 + subcc\t%0, -%1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxv_plus" + [(set (reg:CCXV CC_REG) + (compare:CCXV (plus:DI (match_operand:DI 0 "register_operand" "%r,r") + (match_operand:DI 1 "arith_add_operand" "rI,O")) + (unspec:DI [(match_dup 0) (match_dup 1)] UNSPEC_ADDV)))] + "TARGET_ARCH64" + "@ + addcc\t%0, %1, %%g0 + subcc\t%0, -%1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_plus_set" + [(set (reg:CCV CC_REG) + (compare:CCV (plus:SI (match_operand:SI 1 "register_operand" "%r,r") + (match_operand:SI 2 "arith_add_operand" "rI,O")) + (unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_ADDV))) + (set (match_operand:SI 0 "register_operand" "=r,r") + (plus:SI (match_dup 1) (match_dup 2)))] + "" + "@ + addcc\t%1, %2, %0 + subcc\t%1, -%2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxv_plus_set" + [(set (reg:CCXV CC_REG) + (compare:CCXV (plus:DI (match_operand:DI 1 "register_operand" "%r,r") + (match_operand:DI 2 "arith_add_operand" "rI,O")) + (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_ADDV))) + (set (match_operand:DI 0 "register_operand" "=r,r") + (plus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH64" + "@ + addcc\t%1, %2, %0 + subcc\t%1, -%2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_plus_sltu_set" + [(set (reg:CCV CC_REG) + (compare:CCV (plus:SI (plus:SI (match_operand:SI 1 "register_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")) + (ltu:SI (reg:CCC CC_REG) (const_int 0))) + (unspec:SI [(plus:SI (match_dup 1) (match_dup 2)) + (ltu:SI (reg:CCC CC_REG) (const_int 0))] + UNSPEC_ADDV))) + (set (match_operand:SI 0 "register_operand" "=r") + (plus:SI (plus:SI (match_dup 1) (match_dup 2)) + (ltu:SI (reg:CCC CC_REG) (const_int 0))))] + "" + "addxcc\t%1, %2, %0" + [(set_attr "type" "compare")]) + + +(define_expand "subdi3" + [(set (match_operand:DI 0 "register_operand" "") + (minus:DI (match_operand:DI 1 "register_operand" "") + (match_operand:DI 2 "arith_double_add_operand" "")))] + "" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_subdi3_sp32 (operands[0], operands[1], operands[2])); + DONE; + } +}) + +;; Turning an add/sub instruction into the other changes the Carry flag +;; so the 4096 trick cannot be used for operations in CCXmode. + +(define_expand "usubvdi4" + [(parallel [(set (reg:CCX CC_REG) + (compare:CCX (match_operand:DI 1 "register_or_zero_operand") + (match_operand:DI 2 "arith_double_operand"))) + (set (match_operand:DI 0 "register_operand") + (minus:DI (match_dup 1) (match_dup 2)))]) + (set (pc) (if_then_else (ltu (reg:CCX CC_REG) (const_int 0)) + (label_ref (match_operand 3)) + (pc)))] + "" +{ + if (operands[1] == const0_rtx) + { + emit_insn (gen_unegvdi3 (operands[0], operands[2], operands[3])); + DONE; + } + + if (TARGET_ARCH32) + { + emit_insn (gen_usubvdi4_sp32 (operands[0], operands[1], operands[2])); + rtx x = gen_rtx_LTU (VOIDmode, gen_rtx_REG (CCCmode, SPARC_ICC_REG), + const0_rtx); + emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[3])); + DONE; + } +}) + +;; Turning an add/sub instruction into the other does not change the Overflow +;; flag so the 4096 trick can be used for operations in CCXVmode. + +(define_expand "subvdi4" + [(parallel [(set (reg:CCXV CC_REG) + (compare:CCXV (minus:DI (match_operand:DI 1 "register_operand") + (match_operand:DI 2 "arith_double_add_operand")) + (unspec:DI [(match_dup 1) (match_dup 2)] + UNSPEC_SUBV))) + (set (match_operand:DI 0 "register_operand") + (minus:DI (match_dup 1) (match_dup 2)))]) + (set (pc) (if_then_else (ne (reg:CCXV CC_REG) (const_int 0)) + (label_ref (match_operand 3)) + (pc)))] + "" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_subvdi4_sp32 (operands[0], operands[1], operands[2])); + rtx x = gen_rtx_NE (VOIDmode, gen_rtx_REG (CCVmode, SPARC_ICC_REG), + const0_rtx); + emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[3])); + DONE; + } +}) + +(define_insn_and_split "subdi3_sp32" + [(set (match_operand:DI 0 "register_operand" "=&r") + (minus:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "arith_double_operand" "rHI"))) + (clobber (reg:CC CC_REG))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CC CC_REG) + (compare:CC (match_dup 4) (match_dup 5))) + (set (match_dup 3) + (minus:SI (match_dup 4) (match_dup 5)))]) + (set (match_dup 6) + (minus:SI (minus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CC CC_REG) (const_int 0))))] +{ + operands[3] = gen_lowpart (SImode, operands[0]); + operands[4] = gen_lowpart (SImode, operands[1]); + operands[5] = gen_lowpart (SImode, operands[2]); + operands[6] = gen_highpart (SImode, operands[0]); + operands[7] = gen_highpart (SImode, operands[1]); + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); +} + [(set_attr "length" "2")]) + +(define_insn_and_split "usubvdi4_sp32" + [(set (reg:CCC CC_REG) + (compare:CCC (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "arith_double_operand" "rHI"))) + (set (match_operand:DI 0 "register_operand" "=&r") + (minus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CC CC_REG) + (compare:CC (match_dup 4) (match_dup 5))) + (set (match_dup 3) + (minus:SI (match_dup 4) (match_dup 5)))]) + (parallel [(set (reg:CCC CC_REG) + (compare:CCC (zero_extend:DI + (minus:SI (minus:SI (match_dup 7) + (ltu:SI (reg:CC CC_REG) + (const_int 0))) + (match_dup 8))) + (minus:DI + (minus:DI (zero_extend:DI (match_dup 7)) + (ltu:DI (reg:CC CC_REG) + (const_int 0))) + (zero_extend:DI (match_dup 8))))) + (set (match_dup 6) + (minus:SI (minus:SI (match_dup 7) + (ltu:SI (reg:CC CC_REG) + (const_int 0))) + (match_dup 8)))])] +{ + operands[3] = gen_lowpart (SImode, operands[0]); + operands[4] = gen_lowpart (SImode, operands[1]); + operands[5] = gen_lowpart (SImode, operands[2]); + operands[6] = gen_highpart (SImode, operands[0]); + operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); +} + [(set_attr "length" "2")]) + +(define_insn_and_split "subvdi4_sp32" + [(set (reg:CCV CC_REG) + (compare:CCV (minus:DI (match_operand:DI 1 "register_operand" "%r") + (match_operand:DI 2 "arith_double_operand" "rHI")) + (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_SUBV))) + (set (match_operand:DI 0 "register_operand" "=&r") + (minus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CC CC_REG) + (compare:CC (match_dup 4) (match_dup 5))) + (set (match_dup 3) + (minus:SI (match_dup 4) (match_dup 5)))]) + (parallel [(set (reg:CCV CC_REG) + (compare:CCV (minus:SI (minus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CC CC_REG) + (const_int 0))) + (unspec:SI [(minus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CC CC_REG) + (const_int 0))] + UNSPEC_SUBV))) + (set (match_dup 6) + (minus:SI (minus:SI (match_dup 7) (match_dup 8)) + (ltu:SI (reg:CC CC_REG) (const_int 0))))])] +{ + operands[3] = gen_lowpart (SImode, operands[0]); + operands[4] = gen_lowpart (SImode, operands[1]); + operands[5] = gen_lowpart (SImode, operands[2]); + operands[6] = gen_highpart (SImode, operands[0]); + operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); + operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); +} + [(set_attr "length" "2")]) + +(define_insn_and_split "*subx_extend_sp32" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI (minus:SI (minus:SI + (match_operand:SI 1 "register_or_zero_operand" "rJ") + (match_operand:SI 2 "arith_operand" "rI")) + (ltu:SI (reg:CCC CC_REG) (const_int 0)))))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(set (match_dup 3) (minus:SI (minus:SI (match_dup 1) (match_dup 2)) + (ltu:SI (reg:CCC CC_REG) (const_int 0)))) + (set (match_dup 4) (const_int 0))] + "operands[3] = gen_lowpart (SImode, operands[0]); + operands[4] = gen_highpart (SImode, operands[0]);" + [(set_attr "length" "2")]) + +(define_insn_and_split "*subdi3_extend_sp32" + [(set (match_operand:DI 0 "register_operand" "=&r") + (minus:DI (match_operand:DI 1 "register_operand" "r") + (zero_extend:DI (match_operand:SI 2 "register_operand" "r")))) + (clobber (reg:CC CC_REG))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CC CC_REG) + (compare:CC (match_dup 3) (match_dup 2))) + (set (match_dup 5) (minus:SI (match_dup 3) (match_dup 2)))]) + (set (match_dup 6) + (minus:SI (minus:SI (match_dup 4) (const_int 0)) + (ltu:SI (reg:CC CC_REG) (const_int 0))))] + "operands[3] = gen_lowpart (SImode, operands[1]); + operands[4] = gen_highpart (SImode, operands[1]); + operands[5] = gen_lowpart (SImode, operands[0]); + operands[6] = gen_highpart (SImode, operands[0]);" + [(set_attr "length" "2")]) + +(define_insn "*subdi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r,r") + (minus:DI (match_operand:DI 1 "register_operand" "r,r") + (match_operand:DI 2 "arith_add_operand" "rI,O")))] + "TARGET_ARCH64" + "@ + sub\t%1, %2, %0 + add\t%1, -%2, %0") + +(define_insn "subsi3" + [(set (match_operand:SI 0 "register_operand" "=r,r") + (minus:SI (match_operand:SI 1 "register_operand" "r,r") + (match_operand:SI 2 "arith_add_operand" "rI,O")))] + "" + "@ + sub\t%1, %2, %0 + add\t%1, -%2, %0") + +;; Turning an add/sub instruction into the other changes the Carry flag +;; so the 4096 trick cannot be used for operations in CCmode. + +(define_expand "usubvsi4" + [(parallel [(set (reg:CC CC_REG) + (compare:CC (match_operand:SI 1 "register_or_zero_operand") + (match_operand:SI 2 "arith_operand"))) + (set (match_operand:SI 0 "register_operand") + (minus:SI (match_dup 1) (match_dup 2)))]) + (set (pc) (if_then_else (ltu (reg:CC CC_REG) (const_int 0)) + (label_ref (match_operand 3)) + (pc)))] + "" +{ + if (operands[1] == const0_rtx) + { + emit_insn (gen_unegvsi3 (operands[0], operands[2], operands[3])); + DONE; + } +}) + +;; Turning an add/sub instruction into the other does not change the Overflow +;; flag so the 4096 trick can be used for operations in CCVmode. + +(define_expand "subvsi4" + [(parallel [(set (reg:CCV CC_REG) + (compare:CCV (minus:SI (match_operand:SI 1 "register_operand") + (match_operand:SI 2 "arith_add_operand")) + (unspec:SI [(match_dup 1) (match_dup 2)] + UNSPEC_SUBV))) + (set (match_operand:SI 0 "register_operand") + (minus:SI (match_dup 1) (match_dup 2)))]) + (set (pc) (if_then_else (ne (reg:CCV CC_REG) (const_int 0)) + (label_ref (match_operand 3)) + (pc)))] + "") + +(define_insn "*cmp_ccnz_minus" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (minus:SI (match_operand:SI 0 "register_or_zero_operand" "rJ") + (match_operand:SI 1 "arith_operand" "rI")) + (const_int 0)))] + "" + "subcc\t%r0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxnz_minus" + [(set (reg:CCXNZ CC_REG) + (compare:CCXNZ (minus:DI (match_operand:DI 0 "register_or_zero_operand" "rJ") + (match_operand:DI 1 "arith_operand" "rI")) + (const_int 0)))] + "TARGET_ARCH64" + "subcc\t%r0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccnz_minus_set" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") + (match_operand:SI 2 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (minus:SI (match_dup 1) (match_dup 2)))] + "" + "subcc\t%r1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxnz_minus_set" + [(set (reg:CCXNZ CC_REG) + (compare:CCXNZ (minus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") + (match_operand:DI 2 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (minus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH64" + "subcc\t%r1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmpsi_set" + [(set (reg:CC CC_REG) + (compare:CC (match_operand:SI 1 "register_or_zero_operand" "rJ") + (match_operand:SI 2 "arith_operand" "rI"))) + (set (match_operand:SI 0 "register_operand" "=r") + (minus:SI (match_dup 1) (match_dup 2)))] + "" + "subcc\t%r1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmpdi_set" + [(set (reg:CCX CC_REG) + (compare:CCX (match_operand:DI 1 "register_or_zero_operand" "rJ") + (match_operand:DI 2 "arith_operand" "rI"))) + (set (match_operand:DI 0 "register_operand" "=r") + (minus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH64" + "subcc\t%r1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccc_minus_sltu_set" + [(set (reg:CCC CC_REG) + (compare:CCC (zero_extend:DI + (minus:SI + (minus:SI + (match_operand:SI 1 "register_or_zero_operand" "rJ") + (ltu:SI (reg:CC CC_REG) (const_int 0))) + (match_operand:SI 2 "arith_operand" "rI"))) + (minus:DI + (minus:DI + (zero_extend:DI (match_dup 1)) + (ltu:DI (reg:CC CC_REG) (const_int 0))) + (zero_extend:DI (match_dup 2))))) + (set (match_operand:SI 0 "register_operand" "=r") + (minus:SI (minus:SI (match_dup 1) + (ltu:SI (reg:CC CC_REG) (const_int 0))) + (match_dup 2)))] + "" + "subxcc\t%r1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_minus" + [(set (reg:CCV CC_REG) + (compare:CCV (minus:SI (match_operand:SI 0 "register_or_zero_operand" "rJ,rJ") + (match_operand:SI 1 "arith_add_operand" "rI,O")) + (unspec:SI [(match_dup 0) (match_dup 1)] UNSPEC_SUBV)))] + "" + "@ + subcc\t%r0, %1, %%g0 + addcc\t%r0, -%1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxv_minus" + [(set (reg:CCXV CC_REG) + (compare:CCXV (minus:DI (match_operand:DI 0 "register_or_zero_operand" "rJ,rJ") + (match_operand:DI 1 "arith_add_operand" "rI,O")) + (unspec:DI [(match_dup 0) (match_dup 1)] UNSPEC_SUBV)))] + "TARGET_ARCH64" + "@ + subcc\t%r0, %1, %%g0 + addcc\t%r0, -%1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_minus_set" + [(set (reg:CCV CC_REG) + (compare:CCV (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ,rJ") + (match_operand:SI 2 "arith_add_operand" "rI,O")) + (unspec:SI [(match_dup 1) (match_dup 2)] UNSPEC_SUBV))) + (set (match_operand:SI 0 "register_operand" "=r,r") + (minus:SI (match_dup 1) (match_dup 2)))] + "" + "@ + subcc\t%r1, %2, %0 + addcc\t%r1, -%2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxv_minus_set" + [(set (reg:CCXV CC_REG) + (compare:CCXV (minus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ,rJ") + (match_operand:DI 2 "arith_add_operand" "rI,O")) + (unspec:DI [(match_dup 1) (match_dup 2)] UNSPEC_SUBV))) + (set (match_operand:DI 0 "register_operand" "=r,r") + (minus:DI (match_dup 1) (match_dup 2)))] + "TARGET_ARCH64" + "@ + subcc\t%r1, %2, %0 + addcc\t%r1, -%2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_minus_sltu_set" + [(set (reg:CCV CC_REG) + (compare:CCV + (minus:SI (minus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") + (match_operand:SI 2 "arith_operand" "rI")) + (ltu:SI (reg:CC CC_REG) (const_int 0))) + (unspec:SI [(minus:SI (match_dup 1) (match_dup 2)) + (ltu:SI (reg:CC CC_REG) (const_int 0))] + UNSPEC_SUBV))) + (set (match_operand:SI 0 "register_operand" "=r") + (minus:SI (minus:SI (match_dup 1) (match_dup 2)) + (ltu:SI (reg:CC CC_REG) (const_int 0))))] + "" + "subxcc\t%1, %2, %0" + [(set_attr "type" "compare")]) + + +;; Integer multiply/divide instructions. + +;; The 32-bit multiply/divide instructions are deprecated on v9, but at +;; least in UltraSPARC I, II and IIi it is a win tick-wise. + +(define_expand "mulsi3" + [(set (match_operand:SI 0 "register_operand" "") + (mult:SI (match_operand:SI 1 "arith_operand" "") + (match_operand:SI 2 "arith_operand" "")))] + "TARGET_HARD_MUL || TARGET_ARCH64" + "") + +(define_insn "*mulsi3_sp32" + [(set (match_operand:SI 0 "register_operand" "=r") + (mult:SI (match_operand:SI 1 "arith_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")))] + "TARGET_HARD_MUL" + "smul\t%1, %2, %0" + [(set_attr "type" "imul")]) + +(define_insn "*mulsi3_sp64" + [(set (match_operand:SI 0 "register_operand" "=r") + (mult:SI (match_operand:SI 1 "arith_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" + "mulx\t%1, %2, %0" + [(set_attr "type" "imul")]) + +(define_expand "muldi3" + [(set (match_operand:DI 0 "register_operand" "") + (mult:DI (match_operand:DI 1 "arith_operand" "") + (match_operand:DI 2 "arith_operand" "")))] + "TARGET_ARCH64 || TARGET_V8PLUS" +{ + if (TARGET_V8PLUS) + { + emit_insn (gen_muldi3_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +(define_insn "*muldi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (match_operand:DI 1 "arith_operand" "%r") + (match_operand:DI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" + "mulx\t%1, %2, %0" + [(set_attr "type" "imul")]) + +;; V8plus wide multiply. +(define_insn "muldi3_v8plus" + [(set (match_operand:DI 0 "register_operand" "=r,h") + (mult:DI (match_operand:DI 1 "arith_operand" "%r,0") + (match_operand:DI 2 "arith_operand" "rI,rI"))) + (clobber (match_scratch:SI 3 "=&h,X")) + (clobber (match_scratch:SI 4 "=&h,X"))] + "TARGET_V8PLUS" +{ + return output_v8plus_mult (insn, operands, \"mulx\"); +} + [(set_attr "type" "multi") + (set_attr "length" "9,8")]) + +(define_insn "*cmp_mul_set" + [(set (reg:CC CC_REG) + (compare:CC (mult:SI (match_operand:SI 1 "arith_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (mult:SI (match_dup 1) (match_dup 2)))] + "TARGET_V8 || TARGET_SPARCLITE || TARGET_DEPRECATED_V8_INSNS" + "smulcc\t%1, %2, %0" + [(set_attr "type" "imul")]) + +(define_expand "mulsidi3" + [(set (match_operand:DI 0 "register_operand" "") + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "")) + (sign_extend:DI (match_operand:SI 2 "arith_operand" ""))))] + "TARGET_HARD_MUL" +{ + if (CONSTANT_P (operands[2])) + { + if (TARGET_V8PLUS) + emit_insn (gen_const_mulsidi3_v8plus (operands[0], operands[1], + operands[2])); + else if (TARGET_ARCH32) + emit_insn (gen_const_mulsidi3_sp32 (operands[0], operands[1], + operands[2])); + else + emit_insn (gen_const_mulsidi3_sp64 (operands[0], operands[1], + operands[2])); + DONE; + } + if (TARGET_V8PLUS) + { + emit_insn (gen_mulsidi3_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +;; V9 puts the 64-bit product in a 64-bit register. Only out or global +;; registers can hold 64-bit values in the V8plus environment. +(define_insn "mulsidi3_v8plus" + [(set (match_operand:DI 0 "register_operand" "=h,r") + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r")))) + (clobber (match_scratch:SI 3 "=X,&h"))] + "TARGET_V8PLUS" + "@ + smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 + smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" + [(set_attr "type" "multi") + (set_attr "length" "2,3")]) + +(define_insn "const_mulsidi3_v8plus" + [(set (match_operand:DI 0 "register_operand" "=h,r") + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (match_operand:DI 2 "small_int_operand" "I,I"))) + (clobber (match_scratch:SI 3 "=X,&h"))] + "TARGET_V8PLUS" + "@ + smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 + smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" + [(set_attr "type" "multi") + (set_attr "length" "2,3")]) + +(define_insn "*mulsidi3_sp32" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) + (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] + "TARGET_HARD_MUL32" +{ + return TARGET_SPARCLET + ? "smuld\t%1, %2, %L0" + : "smul\t%1, %2, %L0\n\trd\t%%y, %H0"; +} + [(set (attr "type") + (if_then_else (eq_attr "isa" "sparclet") + (const_string "imul") (const_string "multi"))) + (set (attr "length") + (if_then_else (eq_attr "isa" "sparclet") + (const_int 1) (const_int 2)))]) + +(define_insn "*mulsidi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) + (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] + "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" + "smul\t%1, %2, %0" + [(set_attr "type" "imul")]) + +;; Extra pattern, because sign_extend of a constant isn't valid. + +(define_insn "const_mulsidi3_sp32" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) + (match_operand:DI 2 "small_int_operand" "I")))] + "TARGET_HARD_MUL32" +{ + return TARGET_SPARCLET + ? "smuld\t%1, %2, %L0" + : "smul\t%1, %2, %L0\n\trd\t%%y, %H0"; +} + [(set (attr "type") + (if_then_else (eq_attr "isa" "sparclet") + (const_string "imul") (const_string "multi"))) + (set (attr "length") + (if_then_else (eq_attr "isa" "sparclet") + (const_int 1) (const_int 2)))]) + +(define_insn "const_mulsidi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) + (match_operand:DI 2 "small_int_operand" "I")))] + "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" + "smul\t%1, %2, %0" + [(set_attr "type" "imul")]) + +(define_expand "smulsi3_highpart" + [(set (match_operand:SI 0 "register_operand" "") + (truncate:SI + (lshiftrt:DI + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "")) + (sign_extend:DI (match_operand:SI 2 "arith_operand" ""))) + (const_int 32))))] + "TARGET_HARD_MUL && TARGET_ARCH32" +{ + if (CONSTANT_P (operands[2])) + { + if (TARGET_V8PLUS) + { + emit_insn (gen_const_smulsi3_highpart_v8plus (operands[0], + operands[1], + operands[2], + GEN_INT (32))); + DONE; + } + emit_insn (gen_const_smulsi3_highpart (operands[0], operands[1], operands[2])); + DONE; + } + if (TARGET_V8PLUS) + { + emit_insn (gen_smulsi3_highpart_v8plus (operands[0], operands[1], + operands[2], GEN_INT (32))); + DONE; + } +}) + +(define_insn "smulsi3_highpart_v8plus" + [(set (match_operand:SI 0 "register_operand" "=h,r") + (truncate:SI + (lshiftrt:DI + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) + (match_operand:SI 3 "small_int_operand" "I,I")))) + (clobber (match_scratch:SI 4 "=X,&h"))] + "TARGET_V8PLUS" + "@ + smul\t%1, %2, %0\;srlx\t%0, %3, %0 + smul\t%1, %2, %4\;srlx\t%4, %3, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +;; The combiner changes TRUNCATE in the previous pattern to SUBREG. +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=h,r") + (subreg:SI + (lshiftrt:DI + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (sign_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) + (match_operand:SI 3 "small_int_operand" "I,I")) 4)) + (clobber (match_scratch:SI 4 "=X,&h"))] + "TARGET_V8PLUS" + "@ + smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 + smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_insn "const_smulsi3_highpart_v8plus" + [(set (match_operand:SI 0 "register_operand" "=h,r") + (truncate:SI + (lshiftrt:DI + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (match_operand:DI 2 "small_int_operand" "I,I")) + (match_operand:SI 3 "small_int_operand" "I,I")))) + (clobber (match_scratch:SI 4 "=X,&h"))] + "TARGET_V8PLUS" + "@ + smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 + smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_insn "*smulsi3_highpart_sp32" + [(set (match_operand:SI 0 "register_operand" "=r") + (truncate:SI + (lshiftrt:DI + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) + (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))) + (const_int 32))))] + "TARGET_HARD_MUL32" + "smul\t%1, %2, %%g0\n\trd\t%%y, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_insn "const_smulsi3_highpart" + [(set (match_operand:SI 0 "register_operand" "=r") + (truncate:SI + (lshiftrt:DI + (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) + (match_operand:DI 2 "small_int_operand" "i")) + (const_int 32))))] + "TARGET_HARD_MUL32" + "smul\t%1, %2, %%g0\n\trd\t%%y, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_expand "umulsidi3" + [(set (match_operand:DI 0 "register_operand" "") + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "")) + (zero_extend:DI (match_operand:SI 2 "uns_arith_operand" ""))))] + "TARGET_HARD_MUL" +{ + if (CONSTANT_P (operands[2])) + { + if (TARGET_V8PLUS) + emit_insn (gen_const_umulsidi3_v8plus (operands[0], operands[1], + operands[2])); + else if (TARGET_ARCH32) + emit_insn (gen_const_umulsidi3_sp32 (operands[0], operands[1], + operands[2])); + else + emit_insn (gen_const_umulsidi3_sp64 (operands[0], operands[1], + operands[2])); + DONE; + } + if (TARGET_V8PLUS) + { + emit_insn (gen_umulsidi3_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +(define_insn "umulsidi3_v8plus" + [(set (match_operand:DI 0 "register_operand" "=h,r") + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (zero_extend:DI (match_operand:SI 2 "register_operand" "r,r")))) + (clobber (match_scratch:SI 3 "=X,&h"))] + "TARGET_V8PLUS" + "@ + umul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 + umul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" + [(set_attr "type" "multi") + (set_attr "length" "2,3")]) + +(define_insn "*umulsidi3_sp32" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) + (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] + "TARGET_HARD_MUL32" +{ + return TARGET_SPARCLET + ? "umuld\t%1, %2, %L0" + : "umul\t%1, %2, %L0\n\trd\t%%y, %H0"; +} + [(set (attr "type") + (if_then_else (eq_attr "isa" "sparclet") + (const_string "imul") (const_string "multi"))) + (set (attr "length") + (if_then_else (eq_attr "isa" "sparclet") + (const_int 1) (const_int 2)))]) + +(define_insn "*umulsidi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) + (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] + "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" + "umul\t%1, %2, %0" + [(set_attr "type" "imul")]) + +;; Extra pattern, because sign_extend of a constant isn't valid. + +(define_insn "const_umulsidi3_sp32" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) + (match_operand:DI 2 "uns_small_int_operand" "")))] + "TARGET_HARD_MUL32" +{ + return TARGET_SPARCLET + ? "umuld\t%1, %s2, %L0" + : "umul\t%1, %s2, %L0\n\trd\t%%y, %H0"; +} + [(set (attr "type") + (if_then_else (eq_attr "isa" "sparclet") + (const_string "imul") (const_string "multi"))) + (set (attr "length") + (if_then_else (eq_attr "isa" "sparclet") + (const_int 1) (const_int 2)))]) + +(define_insn "const_umulsidi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) + (match_operand:DI 2 "uns_small_int_operand" "")))] + "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" + "umul\t%1, %s2, %0" + [(set_attr "type" "imul")]) + +(define_insn "const_umulsidi3_v8plus" + [(set (match_operand:DI 0 "register_operand" "=h,r") + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (match_operand:DI 2 "uns_small_int_operand" ""))) + (clobber (match_scratch:SI 3 "=X,h"))] + "TARGET_V8PLUS" + "@ + umul\t%1, %s2, %L0\n\tsrlx\t%L0, 32, %H0 + umul\t%1, %s2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0" + [(set_attr "type" "multi") + (set_attr "length" "2,3")]) + +(define_expand "umulsi3_highpart" + [(set (match_operand:SI 0 "register_operand" "") + (truncate:SI + (lshiftrt:DI + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "")) + (zero_extend:DI (match_operand:SI 2 "uns_arith_operand" ""))) + (const_int 32))))] + "TARGET_HARD_MUL && TARGET_ARCH32" +{ + if (CONSTANT_P (operands[2])) + { + if (TARGET_V8PLUS) + { + emit_insn (gen_const_umulsi3_highpart_v8plus (operands[0], + operands[1], + operands[2], + GEN_INT (32))); + DONE; + } + emit_insn (gen_const_umulsi3_highpart (operands[0], operands[1], operands[2])); + DONE; + } + if (TARGET_V8PLUS) + { + emit_insn (gen_umulsi3_highpart_v8plus (operands[0], operands[1], + operands[2], GEN_INT (32))); + DONE; + } +}) + +(define_insn "umulsi3_highpart_v8plus" + [(set (match_operand:SI 0 "register_operand" "=h,r") + (truncate:SI + (lshiftrt:DI + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (zero_extend:DI (match_operand:SI 2 "register_operand" "r,r"))) + (match_operand:SI 3 "small_int_operand" "I,I")))) + (clobber (match_scratch:SI 4 "=X,h"))] + "TARGET_V8PLUS" + "@ + umul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 + umul\t%1, %2, %4\n\tsrlx\t%4, %3, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_insn "const_umulsi3_highpart_v8plus" + [(set (match_operand:SI 0 "register_operand" "=h,r") + (truncate:SI + (lshiftrt:DI + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r,r")) + (match_operand:DI 2 "uns_small_int_operand" "")) + (match_operand:SI 3 "small_int_operand" "I,I")))) + (clobber (match_scratch:SI 4 "=X,h"))] + "TARGET_V8PLUS" + "@ + umul\t%1, %s2, %0\n\tsrlx\t%0, %3, %0 + umul\t%1, %s2, %4\n\tsrlx\t%4, %3, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_insn "*umulsi3_highpart_sp32" + [(set (match_operand:SI 0 "register_operand" "=r") + (truncate:SI + (lshiftrt:DI + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) + (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))) + (const_int 32))))] + "TARGET_HARD_MUL32" + "umul\t%1, %2, %%g0\n\trd\t%%y, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_insn "const_umulsi3_highpart" + [(set (match_operand:SI 0 "register_operand" "=r") + (truncate:SI + (lshiftrt:DI + (mult:DI (zero_extend:DI (match_operand:SI 1 "register_operand" "r")) + (match_operand:DI 2 "uns_small_int_operand" "")) + (const_int 32))))] + "TARGET_HARD_MUL32" + "umul\t%1, %s2, %%g0\n\trd\t%%y, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + + +(define_expand "umulxhi_vis" + [(set (match_operand:DI 0 "register_operand" "") + (truncate:DI + (lshiftrt:TI + (mult:TI (zero_extend:TI (match_operand:DI 1 "arith_operand" "")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" ""))) + (const_int 64))))] + "TARGET_VIS3" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_umulxhi_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +(define_insn "*umulxhi_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (truncate:DI + (lshiftrt:TI + (mult:TI (zero_extend:TI (match_operand:DI 1 "arith_operand" "%r")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI"))) + (const_int 64))))] + "TARGET_VIS3 && TARGET_ARCH64" + "umulxhi\t%1, %2, %0" + [(set_attr "type" "imul")]) + +(define_insn "umulxhi_v8plus" + [(set (match_operand:DI 0 "register_operand" "=r,h") + (truncate:DI + (lshiftrt:TI + (mult:TI (zero_extend:TI (match_operand:DI 1 "arith_operand" "%r,0")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI,rI"))) + (const_int 64)))) + (clobber (match_scratch:SI 3 "=&h,X")) + (clobber (match_scratch:SI 4 "=&h,X"))] + "TARGET_VIS3 && TARGET_ARCH32" +{ + return output_v8plus_mult (insn, operands, \"umulxhi\"); +} + [(set_attr "type" "imul") + (set_attr "length" "9,8")]) + +(define_expand "xmulx_vis" + [(set (match_operand:DI 0 "register_operand" "") + (truncate:DI + (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" ""))] + UNSPEC_XMUL)))] + "TARGET_VIS3" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_xmulx_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +(define_insn "*xmulx_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (truncate:DI + (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "%r")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI"))] + UNSPEC_XMUL)))] + "TARGET_VIS3 && TARGET_ARCH64" + "xmulx\t%1, %2, %0" + [(set_attr "type" "imul")]) + +(define_insn "xmulx_v8plus" + [(set (match_operand:DI 0 "register_operand" "=r,h") + (truncate:DI + (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "%r,0")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI,rI"))] + UNSPEC_XMUL))) + (clobber (match_scratch:SI 3 "=&h,X")) + (clobber (match_scratch:SI 4 "=&h,X"))] + "TARGET_VIS3 && TARGET_ARCH32" +{ + return output_v8plus_mult (insn, operands, \"xmulx\"); +} + [(set_attr "type" "imul") + (set_attr "length" "9,8")]) + +(define_expand "xmulxhi_vis" + [(set (match_operand:DI 0 "register_operand" "") + (truncate:DI + (lshiftrt:TI + (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" ""))] + UNSPEC_XMUL) + (const_int 64))))] + "TARGET_VIS3" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_xmulxhi_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +(define_insn "*xmulxhi_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (truncate:DI + (lshiftrt:TI + (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "%r")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI"))] + UNSPEC_XMUL) + (const_int 64))))] + "TARGET_VIS3 && TARGET_ARCH64" + "xmulxhi\t%1, %2, %0" + [(set_attr "type" "imul")]) + +(define_insn "xmulxhi_v8plus" + [(set (match_operand:DI 0 "register_operand" "=r,h") + (truncate:DI + (lshiftrt:TI + (unspec:TI [(zero_extend:TI (match_operand:DI 1 "arith_operand" "%r,0")) + (zero_extend:TI (match_operand:DI 2 "arith_operand" "rI,rI"))] + UNSPEC_XMUL) + (const_int 64)))) + (clobber (match_scratch:SI 3 "=&h,X")) + (clobber (match_scratch:SI 4 "=&h,X"))] + "TARGET_VIS3 && TARGET_ARCH32" +{ + return output_v8plus_mult (insn, operands, \"xmulxhi\"); +} + [(set_attr "type" "imul") + (set_attr "length" "9,8")]) + +(define_expand "divsi3" + [(parallel [(set (match_operand:SI 0 "register_operand" "") + (div:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "input_operand" ""))) + (clobber (match_scratch:SI 3 ""))])] + "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" +{ + if (TARGET_ARCH64) + { + operands[3] = gen_reg_rtx(SImode); + emit_insn (gen_ashrsi3 (operands[3], operands[1], GEN_INT (31))); + emit_insn (gen_divsi3_sp64 (operands[0], operands[1], operands[2], + operands[3])); + DONE; + } +}) + +;; The V8 architecture specifies that there must be at least 3 instructions +;; between a write to the Y register and a use of it for correct results. +;; We try to fill one of them with a simple constant or a memory load. + +(define_insn "divsi3_sp32" + [(set (match_operand:SI 0 "register_operand" "=r,r,r") + (div:SI (match_operand:SI 1 "register_operand" "r,r,r") + (match_operand:SI 2 "input_operand" "rI,K,m"))) + (clobber (match_scratch:SI 3 "=&r,&r,&r"))] + "(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS) && TARGET_ARCH32" +{ + output_asm_insn ("sra\t%1, 31, %3", operands); + output_asm_insn ("wr\t%3, 0, %%y", operands); + + switch (which_alternative) + { + case 0: + if (TARGET_V9) + return "sdiv\t%1, %2, %0"; + else + return "nop\n\tnop\n\tnop\n\tsdiv\t%1, %2, %0"; + case 1: + if (TARGET_V9) + return "sethi\t%%hi(%a2), %3\n\tsdiv\t%1, %3, %0"; + else + return "sethi\t%%hi(%a2), %3\n\tnop\n\tnop\n\tsdiv\t%1, %3, %0"; + case 2: + if (TARGET_V9) + return "ld\t%2, %3\n\tsdiv\t%1, %3, %0"; + else + return "ld\t%2, %3\n\tnop\n\tnop\n\tsdiv\t%1, %3, %0"; + default: + gcc_unreachable (); + } +} + [(set_attr "type" "multi") + (set (attr "length") + (if_then_else (eq_attr "isa" "v9") + (const_int 4) (const_int 6)))]) + +(define_insn "divsi3_sp64" + [(set (match_operand:SI 0 "register_operand" "=r") + (div:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "input_operand" "rI"))) + (use (match_operand:SI 3 "register_operand" "r"))] + "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" + "wr\t%%g0, %3, %%y\n\tsdiv\t%1, %2, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_insn "divdi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (div:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" + "sdivx\t%1, %2, %0" + [(set_attr "type" "idiv")]) + +(define_insn "*cmp_sdiv_cc_set" + [(set (reg:CC CC_REG) + (compare:CC (div:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (div:SI (match_dup 1) (match_dup 2))) + (clobber (match_scratch:SI 3 "=&r"))] + "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" +{ + output_asm_insn ("sra\t%1, 31, %3", operands); + output_asm_insn ("wr\t%3, 0, %%y", operands); + + if (TARGET_V9) + return "sdivcc\t%1, %2, %0"; + else + return "nop\n\tnop\n\tnop\n\tsdivcc\t%1, %2, %0"; +} + [(set_attr "type" "multi") + (set (attr "length") + (if_then_else (eq_attr "isa" "v9") + (const_int 3) (const_int 6)))]) + +(define_expand "udivsi3" + [(set (match_operand:SI 0 "register_operand" "") + (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "") + (match_operand:SI 2 "input_operand" "")))] + "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" + "") + +;; The V8 architecture specifies that there must be at least 3 instructions +;; between a write to the Y register and a use of it for correct results. +;; We try to fill one of them with a simple constant or a memory load. + +(define_insn "udivsi3_sp32" + [(set (match_operand:SI 0 "register_operand" "=r,&r,&r,&r") + (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "r,r,r,m") + (match_operand:SI 2 "input_operand" "rI,K,m,r")))] + "(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS) && TARGET_ARCH32" +{ + output_asm_insn ("wr\t%%g0, 0, %%y", operands); + + switch (which_alternative) + { + case 0: + if (TARGET_V9) + return "udiv\t%1, %2, %0"; + else + return "nop\n\tnop\n\tnop\n\tudiv\t%1, %2, %0"; + case 1: + if (TARGET_V9) + return "sethi\t%%hi(%a2), %0\n\tudiv\t%1, %0, %0"; + else + return "sethi\t%%hi(%a2), %0\n\tnop\n\tnop\n\tudiv\t%1, %0, %0"; + case 2: + if (TARGET_V9) + return "ld\t%2, %0\n\tudiv\t%1, %0, %0"; + else + return "ld\t%2, %0\n\tnop\n\tnop\n\tudiv\t%1, %0, %0"; + case 3: + if (TARGET_V9) + return "ld\t%1, %0\n\tudiv\t%0, %2, %0"; + else + return "ld\t%1, %0\n\tnop\n\tnop\n\tudiv\t%0, %2, %0"; + default: + gcc_unreachable (); + } +} + [(set_attr "type" "multi") + (set (attr "length") + (if_then_else (eq_attr "isa" "v9") + (const_int 3) (const_int 5)))]) + +(define_insn "udivsi3_sp64" + [(set (match_operand:SI 0 "register_operand" "=r") + (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "r") + (match_operand:SI 2 "input_operand" "rI")))] + "TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64" + "wr\t%%g0, 0, %%y\n\tudiv\t%1, %2, %0" + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_insn "udivdi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (udiv:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" + "udivx\t%1, %2, %0" + [(set_attr "type" "idiv")]) + +(define_insn "*cmp_udiv_cc_set" + [(set (reg:CC CC_REG) + (compare:CC (udiv:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (udiv:SI (match_dup 1) (match_dup 2)))] + "TARGET_V8 || TARGET_DEPRECATED_V8_INSNS" +{ + output_asm_insn ("wr\t%%g0, 0, %%y", operands); + + if (TARGET_V9) + return "udivcc\t%1, %2, %0"; + else + return "nop\n\tnop\n\tnop\n\tudivcc\t%1, %2, %0"; +} + [(set_attr "type" "multi") + (set (attr "length") + (if_then_else (eq_attr "isa" "v9") + (const_int 2) (const_int 5)))]) + + +;; SPARClet multiply/accumulate insns + +(define_insn "*smacsi" + [(set (match_operand:SI 0 "register_operand" "=r") + (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")) + (match_operand:SI 3 "register_operand" "0")))] + "TARGET_SPARCLET" + "smac\t%1, %2, %0" + [(set_attr "type" "imul")]) + +(define_insn "*smacdi" + [(set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (mult:DI (sign_extend:DI + (match_operand:SI 1 "register_operand" "%r")) + (sign_extend:DI + (match_operand:SI 2 "register_operand" "r"))) + (match_operand:DI 3 "register_operand" "0")))] + "TARGET_SPARCLET" + "smacd\t%1, %2, %L0" + [(set_attr "type" "imul")]) + +(define_insn "*umacdi" + [(set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (mult:DI (zero_extend:DI + (match_operand:SI 1 "register_operand" "%r")) + (zero_extend:DI + (match_operand:SI 2 "register_operand" "r"))) + (match_operand:DI 3 "register_operand" "0")))] + "TARGET_SPARCLET" + "umacd\t%1, %2, %L0" + [(set_attr "type" "imul")]) + + +;; Boolean instructions. + +(define_insn "anddi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (and:DI (match_operand:DI 1 "arith_operand" "%r") + (match_operand:DI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" + "and\t%1, %2, %0") + +(define_insn "andsi3" + [(set (match_operand:SI 0 "register_operand" "=r") + (and:SI (match_operand:SI 1 "arith_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")))] + "" + "and\t%1, %2, %0") + +(define_split + [(set (match_operand:SI 0 "register_operand" "") + (and:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "const_compl_high_operand" ""))) + (clobber (match_operand:SI 3 "register_operand" ""))] + "" + [(set (match_dup 3) (match_dup 4)) + (set (match_dup 0) (and:SI (not:SI (match_dup 3)) (match_dup 1)))] +{ + operands[4] = GEN_INT (~INTVAL (operands[2])); +}) + +(define_insn "*and_not_di_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (and:DI (not:DI (match_operand:DI 1 "register_operand" "%r")) + (match_operand:DI 2 "register_operand" "r")))] + "TARGET_ARCH64" + "andn\t%2, %1, %0") + +(define_insn "*and_not_si" + [(set (match_operand:SI 0 "register_operand" "=r") + (and:SI (not:SI (match_operand:SI 1 "register_operand" "%r")) + (match_operand:SI 2 "register_operand" "r")))] + "" + "andn\t%2, %1, %0") + +(define_insn "iordi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (ior:DI (match_operand:DI 1 "arith_operand" "%r") + (match_operand:DI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" + "or\t%1, %2, %0") + +(define_insn "iorsi3" + [(set (match_operand:SI 0 "register_operand" "=r") + (ior:SI (match_operand:SI 1 "arith_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")))] + "" + "or\t%1, %2, %0") + +(define_split + [(set (match_operand:SI 0 "register_operand" "") + (ior:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "const_compl_high_operand" ""))) + (clobber (match_operand:SI 3 "register_operand" ""))] + "" + [(set (match_dup 3) (match_dup 4)) + (set (match_dup 0) (ior:SI (not:SI (match_dup 3)) (match_dup 1)))] +{ + operands[4] = gen_int_mode (~INTVAL (operands[2]), SImode); +}) + +(define_insn "*or_not_di_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (ior:DI (not:DI (match_operand:DI 1 "register_operand" "r")) + (match_operand:DI 2 "register_operand" "r")))] + "TARGET_ARCH64" + "orn\t%2, %1, %0") + +(define_insn "*or_not_si" + [(set (match_operand:SI 0 "register_operand" "=r") + (ior:SI (not:SI (match_operand:SI 1 "register_operand" "r")) + (match_operand:SI 2 "register_operand" "r")))] + "" + "orn\t%2, %1, %0") + +(define_insn "xordi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (xor:DI (match_operand:DI 1 "arith_operand" "%rJ") + (match_operand:DI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" + "xor\t%r1, %2, %0") + +(define_insn "xorsi3" + [(set (match_operand:SI 0 "register_operand" "=r") + (xor:SI (match_operand:SI 1 "arith_operand" "%rJ") + (match_operand:SI 2 "arith_operand" "rI")))] + "" + "xor\t%r1, %2, %0") + +(define_split + [(set (match_operand:SI 0 "register_operand" "") + (xor:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "const_compl_high_operand" ""))) + (clobber (match_operand:SI 3 "register_operand" ""))] + "" + [(set (match_dup 3) (match_dup 4)) + (set (match_dup 0) (not:SI (xor:SI (match_dup 3) (match_dup 1))))] +{ + operands[4] = gen_int_mode (~INTVAL (operands[2]), SImode); +}) + +(define_split + [(set (match_operand:SI 0 "register_operand" "") + (not:SI (xor:SI (match_operand:SI 1 "register_operand" "") + (match_operand:SI 2 "const_compl_high_operand" "")))) + (clobber (match_operand:SI 3 "register_operand" ""))] + "" + [(set (match_dup 3) (match_dup 4)) + (set (match_dup 0) (xor:SI (match_dup 3) (match_dup 1)))] +{ + operands[4] = gen_int_mode (~INTVAL (operands[2]), SImode); +}) + +(define_insn "*xor_not_di_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (not:DI (xor:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") + (match_operand:DI 2 "arith_operand" "rI"))))] + "TARGET_ARCH64" + "xnor\t%r1, %2, %0") + +(define_insn "*xor_not_si" + [(set (match_operand:SI 0 "register_operand" "=r") + (not:SI (xor:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") + (match_operand:SI 2 "arith_operand" "rI"))))] + "" + "xnor\t%r1, %2, %0") + +;; These correspond to the above in the case where we also (or only) +;; want to set the condition code. + +(define_insn "*cmp_cc_arith_op" + [(set (reg:CC CC_REG) + (compare:CC (match_operator:SI 2 "cc_arith_operator" + [(match_operand:SI 0 "arith_operand" "%r") + (match_operand:SI 1 "arith_operand" "rI")]) + (const_int 0)))] + "" + "%A2cc\t%0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_arith_op" + [(set (reg:CCX CC_REG) + (compare:CCX (match_operator:DI 2 "cc_arith_operator" + [(match_operand:DI 0 "arith_operand" "%r") + (match_operand:DI 1 "arith_operand" "rI")]) + (const_int 0)))] + "TARGET_ARCH64" + "%A2cc\t%0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_cc_arith_op_set" + [(set (reg:CC CC_REG) + (compare:CC (match_operator:SI 3 "cc_arith_operator" + [(match_operand:SI 1 "arith_operand" "%r") + (match_operand:SI 2 "arith_operand" "rI")]) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (match_operator:SI 4 "cc_arith_operator" + [(match_dup 1) (match_dup 2)]))] + "GET_CODE (operands[3]) == GET_CODE (operands[4])" + "%A3cc\t%1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_arith_op_set" + [(set (reg:CCX CC_REG) + (compare:CCX (match_operator:DI 3 "cc_arith_operator" + [(match_operand:DI 1 "arith_operand" "%r") + (match_operand:DI 2 "arith_operand" "rI")]) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (match_operator:DI 4 "cc_arith_operator" + [(match_dup 1) (match_dup 2)]))] + "TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])" + "%A3cc\t%1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_cc_xor_not" + [(set (reg:CC CC_REG) + (compare:CC + (not:SI (xor:SI (match_operand:SI 0 "register_or_zero_operand" "%rJ") + (match_operand:SI 1 "arith_operand" "rI"))) + (const_int 0)))] + "" + "xnorcc\t%r0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_xor_not" + [(set (reg:CCX CC_REG) + (compare:CCX + (not:DI (xor:DI (match_operand:DI 0 "register_or_zero_operand" "%rJ") + (match_operand:DI 1 "arith_operand" "rI"))) + (const_int 0)))] + "TARGET_ARCH64" + "xnorcc\t%r0, %1, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_cc_xor_not_set" + [(set (reg:CC CC_REG) + (compare:CC + (not:SI (xor:SI (match_operand:SI 1 "register_or_zero_operand" "%rJ") + (match_operand:SI 2 "arith_operand" "rI"))) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (not:SI (xor:SI (match_dup 1) (match_dup 2))))] + "" + "xnorcc\t%r1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_xor_not_set" + [(set (reg:CCX CC_REG) + (compare:CCX + (not:DI (xor:DI (match_operand:DI 1 "register_or_zero_operand" "%rJ") + (match_operand:DI 2 "arith_operand" "rI"))) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (not:DI (xor:DI (match_dup 1) (match_dup 2))))] + "TARGET_ARCH64" + "xnorcc\t%r1, %2, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_cc_arith_op_not" + [(set (reg:CC CC_REG) + (compare:CC (match_operator:SI 2 "cc_arith_not_operator" + [(not:SI (match_operand:SI 0 "arith_operand" "rI")) + (match_operand:SI 1 "register_or_zero_operand" "rJ")]) + (const_int 0)))] + "" + "%B2cc\t%r1, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_arith_op_not" + [(set (reg:CCX CC_REG) + (compare:CCX (match_operator:DI 2 "cc_arith_not_operator" + [(not:DI (match_operand:DI 0 "arith_operand" "rI")) + (match_operand:DI 1 "register_or_zero_operand" "rJ")]) + (const_int 0)))] + "TARGET_ARCH64" + "%B2cc\t%r1, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_cc_arith_op_not_set" + [(set (reg:CC CC_REG) + (compare:CC (match_operator:SI 3 "cc_arith_not_operator" + [(not:SI (match_operand:SI 1 "arith_operand" "rI")) + (match_operand:SI 2 "register_or_zero_operand" "rJ")]) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (match_operator:SI 4 "cc_arith_not_operator" + [(not:SI (match_dup 1)) (match_dup 2)]))] + "GET_CODE (operands[3]) == GET_CODE (operands[4])" + "%B3cc\t%r2, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_arith_op_not_set" + [(set (reg:CCX CC_REG) + (compare:CCX (match_operator:DI 3 "cc_arith_not_operator" + [(not:DI (match_operand:DI 1 "arith_operand" "rI")) + (match_operand:DI 2 "register_or_zero_operand" "rJ")]) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (match_operator:DI 4 "cc_arith_not_operator" + [(not:DI (match_dup 1)) (match_dup 2)]))] + "TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])" + "%B3cc\t%r2, %1, %0" + [(set_attr "type" "compare")]) + +;; We cannot use the "neg" pseudo insn because the Sun assembler +;; does not know how to make it work for constants. + +(define_expand "negdi2" + [(set (match_operand:DI 0 "register_operand" "=r") + (neg:DI (match_operand:DI 1 "register_operand" "r")))] + "" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_negdi2_sp32 (operands[0], operands[1])); + DONE; + } +}) + +(define_expand "unegvdi3" + [(parallel [(set (reg:CCXC CC_REG) + (compare:CCXC (not:DI (match_operand:DI 1 "register_operand" "")) + (const_int -1))) + (set (match_operand:DI 0 "register_operand" "") + (neg:DI (match_dup 1)))]) + (set (pc) + (if_then_else (ltu (reg:CCXC CC_REG) (const_int 0)) + (label_ref (match_operand 2 "")) + (pc)))] + "" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_unegvdi3_sp32 (operands[0], operands[1])); + rtx x = gen_rtx_LTU (VOIDmode, gen_rtx_REG (CCCmode, SPARC_ICC_REG), + const0_rtx); + emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[2])); + DONE; + } +}) + +(define_expand "negvdi3" + [(parallel [(set (reg:CCXV CC_REG) + (compare:CCXV (neg:DI (match_operand:DI 1 "register_operand" "")) + (unspec:DI [(match_dup 1)] UNSPEC_NEGV))) + (set (match_operand:DI 0 "register_operand" "") + (neg:DI (match_dup 1)))]) + (set (pc) + (if_then_else (ne (reg:CCXV CC_REG) (const_int 0)) + (label_ref (match_operand 2 "")) + (pc)))] + "" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_negvdi3_sp32 (operands[0], operands[1])); + rtx x = gen_rtx_NE (VOIDmode, gen_rtx_REG (CCVmode, SPARC_ICC_REG), + const0_rtx); + emit_jump_insn (gen_cbranchcc4 (x, XEXP (x, 0), XEXP (x, 1), operands[2])); + DONE; + } +}) + +(define_insn_and_split "negdi2_sp32" + [(set (match_operand:DI 0 "register_operand" "=&r") + (neg:DI (match_operand:DI 1 "register_operand" "r"))) + (clobber (reg:CC CC_REG))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (not:SI (match_dup 5)) (const_int -1))) + (set (match_dup 4) (neg:SI (match_dup 5)))]) + (set (match_dup 2) (minus:SI (minus:SI (const_int 0) (match_dup 3)) + (ltu:SI (reg:CCC CC_REG) (const_int 0))))] + "operands[2] = gen_highpart (SImode, operands[0]); + operands[3] = gen_highpart (SImode, operands[1]); + operands[4] = gen_lowpart (SImode, operands[0]); + operands[5] = gen_lowpart (SImode, operands[1]);" + [(set_attr "length" "2")]) + +(define_insn_and_split "unegvdi3_sp32" + [(set (reg:CCC CC_REG) + (compare:CCC (not:DI (match_operand:DI 1 "register_operand" "r")) + (const_int -1))) + (set (match_operand:DI 0 "register_operand" "=&r") + (neg:DI (match_dup 1)))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (not:SI (match_dup 5)) (const_int -1))) + (set (match_dup 4) (neg:SI (match_dup 5)))]) + (parallel [(set (reg:CCC CC_REG) + (compare:CCC (zero_extend:DI + (neg:SI (plus:SI (match_dup 3) + (ltu:SI (reg:CCC CC_REG) + (const_int 0))))) + (neg:DI (plus:DI (zero_extend:DI (match_dup 3)) + (ltu:DI (reg:CCC CC_REG) + (const_int 0)))))) + (set (match_dup 2) (neg:SI (plus:SI (match_dup 3) + (ltu:SI (reg:CCC CC_REG) + (const_int 0)))))])] + "operands[2] = gen_highpart (SImode, operands[0]); + operands[3] = gen_highpart (SImode, operands[1]); + operands[4] = gen_lowpart (SImode, operands[0]); + operands[5] = gen_lowpart (SImode, operands[1]);" + [(set_attr "length" "2")]) + +(define_insn_and_split "negvdi3_sp32" + [(set (reg:CCV CC_REG) + (compare:CCV (neg:DI (match_operand:DI 1 "register_operand" "r")) + (unspec:DI [(match_dup 1)] UNSPEC_NEGV))) + (set (match_operand:DI 0 "register_operand" "=&r") + (neg:DI (match_dup 1)))] + "TARGET_ARCH32" + "#" + "&& reload_completed" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (not:SI (match_dup 5)) (const_int -1))) + (set (match_dup 4) (neg:SI (match_dup 5)))]) + (parallel [(set (reg:CCV CC_REG) + (compare:CCV (neg:SI (plus:SI (match_dup 3) + (ltu:SI (reg:CCC CC_REG) + (const_int 0)))) + (unspec:SI [(plus:SI (match_dup 3) + (ltu:SI (reg:CCC CC_REG) + (const_int 0)))] + UNSPEC_NEGV))) + (set (match_dup 2) (neg:SI (plus:SI (match_dup 3) + (ltu:SI (reg:CCC CC_REG) + (const_int 0)))))])] + "operands[2] = gen_highpart (SImode, operands[0]); + operands[3] = gen_highpart (SImode, operands[1]); + operands[4] = gen_lowpart (SImode, operands[0]); + operands[5] = gen_lowpart (SImode, operands[1]);" + [(set_attr "length" "2")]) + +(define_insn "*negdi2_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (neg:DI (match_operand:DI 1 "register_operand" "r")))] + "TARGET_ARCH64" + "sub\t%%g0, %1, %0") + +(define_insn "negsi2" + [(set (match_operand:SI 0 "register_operand" "=r") + (neg:SI (match_operand:SI 1 "register_operand" "r")))] + "" + "sub\t%%g0, %1, %0") + +(define_expand "unegvsi3" + [(parallel [(set (reg:CCC CC_REG) + (compare:CCC (not:SI (match_operand:SI 1 "register_operand" "")) + (const_int -1))) + (set (match_operand:SI 0 "register_operand" "") + (neg:SI (match_dup 1)))]) + (set (pc) + (if_then_else (ltu (reg:CCC CC_REG) (const_int 0)) + (label_ref (match_operand 2 "")) + (pc)))] + "") + +(define_expand "negvsi3" + [(parallel [(set (reg:CCV CC_REG) + (compare:CCV (neg:SI (match_operand:SI 1 "register_operand" "")) + (unspec:SI [(match_dup 1)] UNSPEC_NEGV))) + (set (match_operand:SI 0 "register_operand" "") + (neg:SI (match_dup 1)))]) + (set (pc) + (if_then_else (ne (reg:CCV CC_REG) (const_int 0)) + (label_ref (match_operand 2 "")) + (pc)))] +"") + +(define_insn "*cmp_ccnz_neg" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (neg:SI (match_operand:SI 0 "register_operand" "r")) + (const_int 0)))] + "" + "subcc\t%%g0, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxnz_neg" + [(set (reg:CCXNZ CC_REG) + (compare:CCXNZ (neg:DI (match_operand:DI 0 "register_operand" "r")) + (const_int 0)))] + "TARGET_ARCH64" + "subcc\t%%g0, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccnz_neg_set" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (neg:SI (match_operand:SI 1 "register_operand" "r")) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (neg:SI (match_dup 1)))] + "" + "subcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxnz_neg_set" + [(set (reg:CCXNZ CC_REG) + (compare:CCXNZ (neg:DI (match_operand:DI 1 "register_operand" "r")) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (neg:DI (match_dup 1)))] + "TARGET_ARCH64" + "subcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccc_neg_set" + [(set (reg:CCC CC_REG) + (compare:CCC (not:SI (match_operand:SI 1 "register_operand" "r")) + (const_int -1))) + (set (match_operand:SI 0 "register_operand" "=r") + (neg:SI (match_dup 1)))] + "" + "subcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxc_neg_set" + [(set (reg:CCXC CC_REG) + (compare:CCXC (not:DI (match_operand:DI 1 "register_operand" "r")) + (const_int -1))) + (set (match_operand:DI 0 "register_operand" "=r") + (neg:DI (match_dup 1)))] + "TARGET_ARCH64" + "subcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccc_neg_sltu_set" + [(set (reg:CCC CC_REG) + (compare:CCC (zero_extend:DI + (neg:SI (plus:SI (match_operand:SI 1 "register_operand" "r") + (ltu:SI (reg:CCC CC_REG) + (const_int 0))))) + (neg:DI (plus:DI (zero_extend:DI (match_dup 1)) + (ltu:DI (reg:CCC CC_REG) + (const_int 0)))))) + (set (match_operand:SI 0 "register_operand" "=r") + (neg:SI (plus:SI (match_dup 1) + (ltu:SI (reg:CCC CC_REG) (const_int 0)))))] + "" + "subxcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_neg" + [(set (reg:CCV CC_REG) + (compare:CCV (neg:SI (match_operand:SI 0 "register_operand" "r")) + (unspec:SI [(match_dup 0)] UNSPEC_NEGV)))] + "" + "subcc\t%%g0, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxv_neg" + [(set (reg:CCXV CC_REG) + (compare:CCXV (neg:DI (match_operand:DI 0 "register_operand" "r")) + (unspec:DI [(match_dup 0)] UNSPEC_NEGV)))] + "TARGET_ARCH64" + "subcc\t%%g0, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_neg_set" + [(set (reg:CCV CC_REG) + (compare:CCV (neg:SI (match_operand:SI 1 "register_operand" "r")) + (unspec:SI [(match_dup 1)] UNSPEC_NEGV))) + (set (match_operand:SI 0 "register_operand" "=r") + (neg:SI (match_dup 1)))] + "" + "subcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccxv_neg_set" + [(set (reg:CCXV CC_REG) + (compare:CCXV (neg:DI (match_operand:DI 1 "register_operand" "r")) + (unspec:DI [(match_dup 1)] UNSPEC_NEGV))) + (set (match_operand:DI 0 "register_operand" "=r") + (neg:DI (match_dup 1)))] + "TARGET_ARCH64" + "subcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccv_neg_sltu_set" + [(set (reg:CCV CC_REG) + (compare:CCV (neg:SI (plus:SI (match_operand:SI 1 "register_operand" "r") + (ltu:SI (reg:CCC CC_REG) (const_int 0)))) + (unspec:SI [(plus:SI (match_dup 1) + (ltu:SI (reg:CCC CC_REG) + (const_int 0)))] + UNSPEC_NEGV))) + (set (match_operand:SI 0 "register_operand" "=r") + (neg:SI (plus:SI (match_dup 1) + (ltu:SI (reg:CCC CC_REG) (const_int 0)))))] + "" + "subxcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + + +(define_insn "one_cmpldi2" + [(set (match_operand:DI 0 "register_operand" "=r") + (not:DI (match_operand:DI 1 "arith_operand" "rI")))] + "TARGET_ARCH64" + "xnor\t%%g0, %1, %0") + +(define_insn "one_cmplsi2" + [(set (match_operand:SI 0 "register_operand" "=r") + (not:SI (match_operand:SI 1 "arith_operand" "rI")))] + "" + "xnor\t%%g0, %1, %0") + +(define_insn "*cmp_cc_not" + [(set (reg:CC CC_REG) + (compare:CC (not:SI (match_operand:SI 0 "arith_operand" "rI")) + (const_int 0)))] + "" + "xnorcc\t%%g0, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_not" + [(set (reg:CCX CC_REG) + (compare:CCX (not:DI (match_operand:DI 0 "arith_operand" "rI")) + (const_int 0)))] + "TARGET_ARCH64" + "xnorcc\t%%g0, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_cc_set_not" + [(set (reg:CC CC_REG) + (compare:CC (not:SI (match_operand:SI 1 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (not:SI (match_dup 1)))] + "" + "xnorcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_set_not" + [(set (reg:CCX CC_REG) + (compare:CCX (not:DI (match_operand:DI 1 "arith_operand" "rI")) + (const_int 0))) + (set (match_operand:DI 0 "register_operand" "=r") + (not:DI (match_dup 1)))] + "TARGET_ARCH64" + "xnorcc\t%%g0, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_cc_set" + [(set (match_operand:SI 0 "register_operand" "=r") + (match_operand:SI 1 "register_operand" "r")) + (set (reg:CC CC_REG) + (compare:CC (match_dup 1) (const_int 0)))] + "" + "orcc\t%1, 0, %0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccx_set64" + [(set (match_operand:DI 0 "register_operand" "=r") + (match_operand:DI 1 "register_operand" "r")) + (set (reg:CCX CC_REG) + (compare:CCX (match_dup 1) (const_int 0)))] + "TARGET_ARCH64" + "orcc\t%1, 0, %0" + [(set_attr "type" "compare")]) + + +;; Floating point arithmetic instructions. + +(define_expand "addtf3" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (plus:TF (match_operand:TF 1 "general_operand" "") + (match_operand:TF 2 "general_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_binop (PLUS, operands); DONE;") + +(define_insn "*addtf3_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (plus:TF (match_operand:TF 1 "register_operand" "e") + (match_operand:TF 2 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "faddq\t%1, %2, %0" + [(set_attr "type" "fp")]) + +(define_insn "adddf3" + [(set (match_operand:DF 0 "register_operand" "=e") + (plus:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_FPU" + "faddd\t%1, %2, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_insn "addsf3" + [(set (match_operand:SF 0 "register_operand" "=f") + (plus:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")))] + "TARGET_FPU" + "fadds\t%1, %2, %0" + [(set_attr "type" "fp")]) + +(define_expand "subtf3" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (minus:TF (match_operand:TF 1 "general_operand" "") + (match_operand:TF 2 "general_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_binop (MINUS, operands); DONE;") + +(define_insn "*subtf3_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (minus:TF (match_operand:TF 1 "register_operand" "e") + (match_operand:TF 2 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fsubq\t%1, %2, %0" + [(set_attr "type" "fp")]) + +(define_insn "subdf3" + [(set (match_operand:DF 0 "register_operand" "=e") + (minus:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_FPU" + "fsubd\t%1, %2, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_insn "subsf3" + [(set (match_operand:SF 0 "register_operand" "=f") + (minus:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")))] + "TARGET_FPU" + "fsubs\t%1, %2, %0" + [(set_attr "type" "fp")]) + +(define_expand "multf3" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (mult:TF (match_operand:TF 1 "general_operand" "") + (match_operand:TF 2 "general_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_binop (MULT, operands); DONE;") + +(define_insn "*multf3_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (mult:TF (match_operand:TF 1 "register_operand" "e") + (match_operand:TF 2 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fmulq\t%1, %2, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "muldf3" + [(set (match_operand:DF 0 "register_operand" "=e") + (mult:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_FPU" + "fmuld\t%1, %2, %0" + [(set_attr "type" "fpmul") + (set_attr "fptype" "double")]) + +(define_insn "mulsf3" + [(set (match_operand:SF 0 "register_operand" "=f") + (mult:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")))] + "TARGET_FPU" + "fmuls\t%1, %2, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "fmadf4" + [(set (match_operand:DF 0 "register_operand" "=e") + (fma:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e") + (match_operand:DF 3 "register_operand" "e")))] + "TARGET_FMAF" + "fmaddd\t%1, %2, %3, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "fmsdf4" + [(set (match_operand:DF 0 "register_operand" "=e") + (fma:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e") + (neg:DF (match_operand:DF 3 "register_operand" "e"))))] + "TARGET_FMAF" + "fmsubd\t%1, %2, %3, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "*nfmadf4" + [(set (match_operand:DF 0 "register_operand" "=e") + (neg:DF (fma:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e") + (match_operand:DF 3 "register_operand" "e"))))] + "TARGET_FMAF" + "fnmaddd\t%1, %2, %3, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "*nfmsdf4" + [(set (match_operand:DF 0 "register_operand" "=e") + (neg:DF (fma:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e") + (neg:DF (match_operand:DF 3 "register_operand" "e")))))] + "TARGET_FMAF" + "fnmsubd\t%1, %2, %3, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "fmasf4" + [(set (match_operand:SF 0 "register_operand" "=f") + (fma:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f") + (match_operand:SF 3 "register_operand" "f")))] + "TARGET_FMAF" + "fmadds\t%1, %2, %3, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "fmssf4" + [(set (match_operand:SF 0 "register_operand" "=f") + (fma:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f") + (neg:SF (match_operand:SF 3 "register_operand" "f"))))] + "TARGET_FMAF" + "fmsubs\t%1, %2, %3, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "*nfmasf4" + [(set (match_operand:SF 0 "register_operand" "=f") + (neg:SF (fma:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f") + (match_operand:SF 3 "register_operand" "f"))))] + "TARGET_FMAF" + "fnmadds\t%1, %2, %3, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "*nfmssf4" + [(set (match_operand:SF 0 "register_operand" "=f") + (neg:SF (fma:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f") + (neg:SF (match_operand:SF 3 "register_operand" "f")))))] + "TARGET_FMAF" + "fnmsubs\t%1, %2, %3, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "*muldf3_extend" + [(set (match_operand:DF 0 "register_operand" "=e") + (mult:DF (float_extend:DF (match_operand:SF 1 "register_operand" "f")) + (float_extend:DF (match_operand:SF 2 "register_operand" "f"))))] + "TARGET_FSMULD" + "fsmuld\t%1, %2, %0" + [(set_attr "type" "fpmul") + (set_attr "fptype" "double")]) + +(define_insn "*multf3_extend" + [(set (match_operand:TF 0 "register_operand" "=e") + (mult:TF (float_extend:TF (match_operand:DF 1 "register_operand" "e")) + (float_extend:TF (match_operand:DF 2 "register_operand" "e"))))] + "(TARGET_V8 || TARGET_V9) && TARGET_FPU && TARGET_HARD_QUAD" + "fdmulq\t%1, %2, %0" + [(set_attr "type" "fpmul")]) + +(define_expand "divtf3" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (div:TF (match_operand:TF 1 "general_operand" "") + (match_operand:TF 2 "general_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_binop (DIV, operands); DONE;") + +;; don't have timing for quad-prec. divide. +(define_insn "*divtf3_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (div:TF (match_operand:TF 1 "register_operand" "e") + (match_operand:TF 2 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fdivq\t%1, %2, %0" + [(set_attr "type" "fpdivs")]) + +(define_expand "divdf3" + [(set (match_operand:DF 0 "register_operand" "=e") + (div:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_FPU" + "") + +(define_insn "*divdf3_nofix" + [(set (match_operand:DF 0 "register_operand" "=e") + (div:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_FPU && !sparc_fix_ut699" + "fdivd\t%1, %2, %0" + [(set_attr "type" "fpdivd") + (set_attr "fptype" "double")]) + +(define_insn "*divdf3_fix" + [(set (match_operand:DF 0 "register_operand" "=e") + (div:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_FPU && sparc_fix_ut699" + "fdivd\t%1, %2, %0\n\tstd\t%0, [%%sp-8]\n\tnop" + [(set_attr "type" "fpdivd") + (set_attr "fptype" "double") + (set_attr "length" "3")]) + +(define_insn "divsf3" + [(set (match_operand:SF 0 "register_operand" "=f") + (div:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")))] + "TARGET_FPU && !sparc_fix_ut699" + "fdivs\t%1, %2, %0" + [(set_attr "type" "fpdivs")]) + +(define_expand "negtf2" + [(set (match_operand:TF 0 "register_operand" "") + (neg:TF (match_operand:TF 1 "register_operand" "")))] + "TARGET_FPU" + "") + +(define_insn "*negtf2_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (neg:TF (match_operand:TF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fnegq\t%1, %0" + [(set_attr "type" "fpmove")]) + +(define_insn_and_split "*negtf2" + [(set (match_operand:TF 0 "register_operand" "=e") + (neg:TF (match_operand:TF 1 "register_operand" "e")))] + "TARGET_FPU && !TARGET_HARD_QUAD" + "#" + "&& reload_completed" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx set_src = operands[1]; + rtx dest1, dest2; + rtx src1, src2; + + dest1 = gen_df_reg (set_dest, 0); + dest2 = gen_df_reg (set_dest, 1); + src1 = gen_df_reg (set_src, 0); + src2 = gen_df_reg (set_src, 1); + + /* Now emit using the real source and destination we found, swapping + the order if we detect overlap. */ + if (reg_overlap_mentioned_p (dest1, src2)) + { + emit_insn (gen_movdf (dest2, src2)); + emit_insn (gen_negdf2 (dest1, src1)); + } + else + { + emit_insn (gen_negdf2 (dest1, src1)); + if (REGNO (dest2) != REGNO (src2)) + emit_insn (gen_movdf (dest2, src2)); + } + DONE; +} + [(set_attr "length" "2")]) + +(define_expand "negdf2" + [(set (match_operand:DF 0 "register_operand" "") + (neg:DF (match_operand:DF 1 "register_operand" "")))] + "TARGET_FPU" + "") + +(define_insn_and_split "*negdf2_notv9" + [(set (match_operand:DF 0 "register_operand" "=e") + (neg:DF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU && !TARGET_V9" + "#" + "&& reload_completed" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx set_src = operands[1]; + rtx dest1, dest2; + rtx src1, src2; + + dest1 = gen_highpart (SFmode, set_dest); + dest2 = gen_lowpart (SFmode, set_dest); + src1 = gen_highpart (SFmode, set_src); + src2 = gen_lowpart (SFmode, set_src); + + /* Now emit using the real source and destination we found, swapping + the order if we detect overlap. */ + if (reg_overlap_mentioned_p (dest1, src2)) + { + emit_insn (gen_movsf (dest2, src2)); + emit_insn (gen_negsf2 (dest1, src1)); + } + else + { + emit_insn (gen_negsf2 (dest1, src1)); + if (REGNO (dest2) != REGNO (src2)) + emit_insn (gen_movsf (dest2, src2)); + } + DONE; +} + [(set_attr "length" "2")]) + +(define_insn "*negdf2_v9" + [(set (match_operand:DF 0 "register_operand" "=e") + (neg:DF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_V9" + "fnegd\t%1, %0" + [(set_attr "type" "fpmove") + (set_attr "fptype" "double")]) + +(define_insn "negsf2" + [(set (match_operand:SF 0 "register_operand" "=f") + (neg:SF (match_operand:SF 1 "register_operand" "f")))] + "TARGET_FPU" + "fnegs\t%1, %0" + [(set_attr "type" "fpmove")]) + +(define_expand "abstf2" + [(set (match_operand:TF 0 "register_operand" "") + (abs:TF (match_operand:TF 1 "register_operand" "")))] + "TARGET_FPU" + "") + +(define_insn "*abstf2_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (abs:TF (match_operand:TF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fabsq\t%1, %0" + [(set_attr "type" "fpmove")]) + +(define_insn_and_split "*abstf2" + [(set (match_operand:TF 0 "register_operand" "=e") + (abs:TF (match_operand:TF 1 "register_operand" "e")))] + "TARGET_FPU && !TARGET_HARD_QUAD" + "#" + "&& reload_completed" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx set_src = operands[1]; + rtx dest1, dest2; + rtx src1, src2; + + dest1 = gen_df_reg (set_dest, 0); + dest2 = gen_df_reg (set_dest, 1); + src1 = gen_df_reg (set_src, 0); + src2 = gen_df_reg (set_src, 1); + + /* Now emit using the real source and destination we found, swapping + the order if we detect overlap. */ + if (reg_overlap_mentioned_p (dest1, src2)) + { + emit_insn (gen_movdf (dest2, src2)); + emit_insn (gen_absdf2 (dest1, src1)); + } + else + { + emit_insn (gen_absdf2 (dest1, src1)); + if (REGNO (dest2) != REGNO (src2)) + emit_insn (gen_movdf (dest2, src2)); + } + DONE; +} + [(set_attr "length" "2")]) + +(define_expand "absdf2" + [(set (match_operand:DF 0 "register_operand" "") + (abs:DF (match_operand:DF 1 "register_operand" "")))] + "TARGET_FPU" + "") + +(define_insn_and_split "*absdf2_notv9" + [(set (match_operand:DF 0 "register_operand" "=e") + (abs:DF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU && !TARGET_V9" + "#" + "&& reload_completed" + [(clobber (const_int 0))] +{ + rtx set_dest = operands[0]; + rtx set_src = operands[1]; + rtx dest1, dest2; + rtx src1, src2; + + dest1 = gen_highpart (SFmode, set_dest); + dest2 = gen_lowpart (SFmode, set_dest); + src1 = gen_highpart (SFmode, set_src); + src2 = gen_lowpart (SFmode, set_src); + + /* Now emit using the real source and destination we found, swapping + the order if we detect overlap. */ + if (reg_overlap_mentioned_p (dest1, src2)) + { + emit_insn (gen_movsf (dest2, src2)); + emit_insn (gen_abssf2 (dest1, src1)); + } + else + { + emit_insn (gen_abssf2 (dest1, src1)); + if (REGNO (dest2) != REGNO (src2)) + emit_insn (gen_movsf (dest2, src2)); + } + DONE; +} + [(set_attr "length" "2")]) + +(define_insn "*absdf2_v9" + [(set (match_operand:DF 0 "register_operand" "=e") + (abs:DF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_V9" + "fabsd\t%1, %0" + [(set_attr "type" "fpmove") + (set_attr "fptype" "double")]) + +(define_insn "abssf2" + [(set (match_operand:SF 0 "register_operand" "=f") + (abs:SF (match_operand:SF 1 "register_operand" "f")))] + "TARGET_FPU" + "fabss\t%1, %0" + [(set_attr "type" "fpmove")]) + +(define_expand "sqrttf2" + [(set (match_operand:TF 0 "nonimmediate_operand" "") + (sqrt:TF (match_operand:TF 1 "general_operand" "")))] + "TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)" + "emit_tfmode_unop (SQRT, operands); DONE;") + +(define_insn "*sqrttf2_hq" + [(set (match_operand:TF 0 "register_operand" "=e") + (sqrt:TF (match_operand:TF 1 "register_operand" "e")))] + "TARGET_FPU && TARGET_HARD_QUAD" + "fsqrtq\t%1, %0" + [(set_attr "type" "fpsqrts")]) + +(define_expand "sqrtdf2" + [(set (match_operand:DF 0 "register_operand" "=e") + (sqrt:DF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU" + "") + +(define_insn "*sqrtdf2_nofix" + [(set (match_operand:DF 0 "register_operand" "=e") + (sqrt:DF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU && !sparc_fix_ut699" + "fsqrtd\t%1, %0" + [(set_attr "type" "fpsqrtd") + (set_attr "fptype" "double")]) + +(define_insn "*sqrtdf2_fix" + [(set (match_operand:DF 0 "register_operand" "=e") + (sqrt:DF (match_operand:DF 1 "register_operand" "e")))] + "TARGET_FPU && sparc_fix_ut699" + "fsqrtd\t%1, %0\n\tstd\t%0, [%%sp-8]\n\tnop" + [(set_attr "type" "fpsqrtd") + (set_attr "fptype" "double") + (set_attr "length" "3")]) + +(define_insn "sqrtsf2" + [(set (match_operand:SF 0 "register_operand" "=f") + (sqrt:SF (match_operand:SF 1 "register_operand" "f")))] + "TARGET_FPU && !sparc_fix_ut699" + "fsqrts\t%1, %0" + [(set_attr "type" "fpsqrts")]) + + +;; Arithmetic shift instructions. + +(define_insn "ashlsi3" + [(set (match_operand:SI 0 "register_operand" "=r") + (ashift:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return "sll\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_expand "ashldi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (ashift:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "TARGET_ARCH64 || TARGET_V8PLUS" +{ + if (TARGET_ARCH32) + { + if (GET_CODE (operands[2]) == CONST_INT) + FAIL; + emit_insn (gen_ashldi3_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +(define_insn "*ashldi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (ashift:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); + return "sllx\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_insn "ashldi3_v8plus" + [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") + (ashift:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") + (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) + (clobber (match_scratch:SI 3 "=X,X,&h"))] + "TARGET_V8PLUS" +{ + return output_v8plus_shift (insn ,operands, \"sllx\"); +} + [(set_attr "type" "multi") + (set_attr "length" "5,5,6")]) + +(define_insn "*cmp_ccnz_ashift_1" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (ashift:SI (match_operand:SI 0 "register_operand" "r") + (const_int 1)) + (const_int 0)))] + "" + "addcc\t%0, %0, %%g0" + [(set_attr "type" "compare")]) + +(define_insn "*cmp_ccnz_set_ashift_1" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (ashift:SI (match_operand:SI 1 "register_operand" "r") + (const_int 1)) + (const_int 0))) + (set (match_operand:SI 0 "register_operand" "=r") + (ashift:SI (match_dup 1) (const_int 1)))] + "" + "addcc\t%1, %1, %0" + [(set_attr "type" "compare")]) + +(define_insn "ashrsi3" + [(set (match_operand:SI 0 "register_operand" "=r") + (ashiftrt:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return "sra\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_insn "*ashrsi3_extend0" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extend:DI (ashiftrt:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI"))))] + "TARGET_ARCH64" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return "sra\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +;; This handles the case where +;; (sign_extend:DI (ashiftrt:SI (match_operand:SI) (match_operand:SI))) +;; but combiner "simplifies" it for us. +(define_insn "*ashrsi3_extend1" + [(set (match_operand:DI 0 "register_operand" "=r") + (ashiftrt:DI (ashift:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0) + (const_int 32)) + (match_operand:SI 2 "small_int_operand" "I")))] + "TARGET_ARCH64 && INTVAL (operands[2]) >= 32 && INTVAL (operands[2]) < 64" +{ + operands[2] = GEN_INT (INTVAL (operands[2]) - 32); + return "sra\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +;; This handles the case where +;; (ashiftrt:DI (sign_extend:DI (match_operand:SI)) (const_int)) +;; but combiner "simplifies" it for us. +(define_insn "*ashrsi3_extend2" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extract:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0) + (match_operand 2 "small_int_operand" "I") + (const_int 32)))] + "TARGET_ARCH64 && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 32" +{ + operands[2] = GEN_INT (32 - INTVAL (operands[2])); + return "sra\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_expand "ashrdi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "TARGET_ARCH64 || TARGET_V8PLUS" +{ + if (TARGET_ARCH32) + { + if (GET_CODE (operands[2]) == CONST_INT) + FAIL; /* prefer generic code in this case */ + emit_insn (gen_ashrdi3_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +(define_insn "*ashrdi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); + return "srax\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_insn "ashrdi3_v8plus" + [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") + (ashiftrt:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") + (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) + (clobber (match_scratch:SI 3 "=X,X,&h"))] + "TARGET_V8PLUS" +{ + return output_v8plus_shift (insn, operands, \"srax\"); +} + [(set_attr "type" "multi") + (set_attr "length" "5,5,6")]) + +(define_insn "lshrsi3" + [(set (match_operand:SI 0 "register_operand" "=r") + (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return "srl\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_insn "*lshrsi3_extend0" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI + (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI"))))] + "TARGET_ARCH64" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return "srl\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +;; This handles the case where +;; (zero_extend:DI (lshiftrt:SI (match_operand:SI) (match_operand:SI))) +;; but combiner "simplifies" it for us. +(define_insn "*lshrsi3_extend1" + [(set (match_operand:DI 0 "register_operand" "=r") + (and:DI (subreg:DI (lshiftrt:SI (match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")) 0) + (match_operand 3 "const_int_operand" "")))] + "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) == 0xffffffff" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f); + return "srl\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +;; This handles the case where +;; (lshiftrt:DI (zero_extend:DI (match_operand:SI)) (const_int)) +;; but combiner "simplifies" it for us. +(define_insn "*lshrsi3_extend2" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extract:DI (subreg:DI (match_operand:SI 1 "register_operand" "r") 0) + (match_operand 2 "small_int_operand" "I") + (const_int 32)))] + "TARGET_ARCH64 && INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 32" +{ + operands[2] = GEN_INT (32 - INTVAL (operands[2])); + return "srl\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_expand "lshrdi3" + [(set (match_operand:DI 0 "register_operand" "=r") + (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "TARGET_ARCH64 || TARGET_V8PLUS" +{ + if (TARGET_ARCH32) + { + if (GET_CODE (operands[2]) == CONST_INT) + FAIL; + emit_insn (gen_lshrdi3_v8plus (operands[0], operands[1], operands[2])); + DONE; + } +}) + +(define_insn "*lshrdi3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:SI 2 "arith_operand" "rI")))] + "TARGET_ARCH64" +{ + if (GET_CODE (operands[2]) == CONST_INT) + operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f); + return "srlx\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_insn "lshrdi3_v8plus" + [(set (match_operand:DI 0 "register_operand" "=&h,&h,r") + (lshiftrt:DI (match_operand:DI 1 "arith_operand" "rI,0,rI") + (match_operand:SI 2 "arith_operand" "rI,rI,rI"))) + (clobber (match_scratch:SI 3 "=X,X,&h"))] + "TARGET_V8PLUS" +{ + return output_v8plus_shift (insn, operands, \"srlx\"); +} + [(set_attr "type" "multi") + (set_attr "length" "5,5,6")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r") + (ashiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") + (const_int 32)) 4) + (match_operand:SI 2 "small_int_operand" "I")))] + "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32" +{ + operands[2] = GEN_INT (INTVAL (operands[2]) + 32); + return "srax\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r") + (lshiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") + (const_int 32)) 4) + (match_operand:SI 2 "small_int_operand" "I")))] + "TARGET_ARCH64 && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32" +{ + operands[2] = GEN_INT (INTVAL (operands[2]) + 32); + return "srlx\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r") + (ashiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:SI 2 "small_int_operand" "I")) 4) + (match_operand:SI 3 "small_int_operand" "I")))] + "TARGET_ARCH64 + && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32 + && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32 + && (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64" +{ + operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3])); + + return "srax\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + +(define_insn "" + [(set (match_operand:SI 0 "register_operand" "=r") + (lshiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 "register_operand" "r") + (match_operand:SI 2 "small_int_operand" "I")) 4) + (match_operand:SI 3 "small_int_operand" "I")))] + "TARGET_ARCH64 + && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32 + && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32 + && (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64" +{ + operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3])); + + return "srlx\t%1, %2, %0"; +} + [(set_attr "type" "shift")]) + + +;; Unconditional and other jump instructions. + +(define_expand "jump" + [(set (pc) (label_ref (match_operand 0 "" "")))] + "") + +(define_insn "*jump_ubranch" + [(set (pc) (label_ref (match_operand 0 "" "")))] + "!TARGET_CBCOND" +{ + return output_ubranch (operands[0], insn); +} + [(set_attr "type" "uncond_branch")]) + +(define_insn "*jump_cbcond" + [(set (pc) (label_ref (match_operand 0 "" "")))] + "TARGET_CBCOND" +{ + return output_ubranch (operands[0], insn); +} + [(set_attr "type" "uncond_cbcond")]) + +(define_expand "tablejump" + [(parallel [(set (pc) (match_operand 0 "register_operand" "r")) + (use (label_ref (match_operand 1 "" "")))])] + "" +{ + gcc_assert (GET_MODE (operands[0]) == CASE_VECTOR_MODE); + + /* In pic mode, our address differences are against the base of the + table. Add that base value back in; CSE ought to be able to combine + the two address loads. */ + if (flag_pic) + { + rtx tmp, tmp2; + tmp = gen_rtx_LABEL_REF (Pmode, operands[1]); + tmp2 = operands[0]; + if (CASE_VECTOR_MODE != Pmode) + tmp2 = gen_rtx_SIGN_EXTEND (Pmode, tmp2); + tmp = gen_rtx_PLUS (Pmode, tmp2, tmp); + operands[0] = memory_address (Pmode, tmp); + } +}) + +(define_insn "*tablejump" + [(set (pc) (match_operand:P 0 "address_operand" "p")) + (use (label_ref (match_operand 1 "" "")))] + "" + "jmp\t%a0%#" + [(set_attr "type" "uncond_branch")]) + + +;; Jump to subroutine instructions. + +(define_expand "call" + ;; Note that this expression is not used for generating RTL. + ;; All the RTL is generated explicitly below. + [(call (match_operand 0 "call_operand" "") + (match_operand 3 "" "i"))] + ;; operands[2] is next_arg_register + ;; operands[3] is struct_value_size_rtx. + "" +{ + rtx fn_rtx; + + gcc_assert (MEM_P (operands[0]) && GET_MODE (operands[0]) == FUNCTION_MODE); + + gcc_assert (GET_CODE (operands[3]) == CONST_INT); + + if (GET_CODE (XEXP (operands[0], 0)) == LABEL_REF) + { + /* This is really a PIC sequence. We want to represent + it as a funny jump so its delay slots can be filled. + + ??? But if this really *is* a CALL, will not it clobber the + call-clobbered registers? We lose this if it is a JUMP_INSN. + Why cannot we have delay slots filled if it were a CALL? */ + + /* We accept negative sizes for untyped calls. */ + if (TARGET_ARCH32 && INTVAL (operands[3]) != 0) + emit_jump_insn + (gen_rtx_PARALLEL + (VOIDmode, + gen_rtvec (3, + gen_rtx_SET (pc_rtx, XEXP (operands[0], 0)), + operands[3], + gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); + else + emit_jump_insn + (gen_rtx_PARALLEL + (VOIDmode, + gen_rtvec (2, + gen_rtx_SET (pc_rtx, XEXP (operands[0], 0)), + gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); + goto finish_call; + } + + fn_rtx = operands[0]; + + /* We accept negative sizes for untyped calls. */ + if (TARGET_ARCH32 && INTVAL (operands[3]) != 0) + sparc_emit_call_insn + (gen_rtx_PARALLEL + (VOIDmode, + gen_rtvec (3, gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx), + operands[3], + gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))), + XEXP (fn_rtx, 0)); + else + sparc_emit_call_insn + (gen_rtx_PARALLEL + (VOIDmode, + gen_rtvec (2, gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx), + gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))), + XEXP (fn_rtx, 0)); + + finish_call: + + DONE; +}) + +;; We can't use the same pattern for these two insns, because then registers +;; in the address may not be properly reloaded. + +(define_insn "*call_address" + [(call (mem:P (match_operand:P 0 "address_operand" "p")) + (match_operand 1 "" "")) + (clobber (reg:P O7_REG))] + ;;- Do not use operand 1 for most machines. + "" + "call\t%a0, %1%#" + [(set_attr "type" "call")]) + +(define_insn "*call_symbolic" + [(call (mem:P (match_operand:P 0 "symbolic_operand" "s")) + (match_operand 1 "" "")) + (clobber (reg:P O7_REG))] + ;;- Do not use operand 1 for most machines. + "" + "call\t%a0, %1%#" + [(set_attr "type" "call")]) + +;; This is a call that wants a structure value. +;; There is no such critter for v9 (??? we may need one anyway). +(define_insn "*call_address_struct_value_sp32" + [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) + (match_operand 1 "" "")) + (match_operand 2 "immediate_operand" "") + (clobber (reg:SI O7_REG))] + ;;- Do not use operand 1 for most machines. + "TARGET_ARCH32 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0" +{ + operands[2] = GEN_INT (INTVAL (operands[2]) & 0xfff); + return "call\t%a0, %1\n\t nop\n\tunimp\t%2"; +} + [(set_attr "type" "call_no_delay_slot") + (set_attr "length" "3")]) + +;; This is a call that wants a structure value. +;; There is no such critter for v9 (??? we may need one anyway). +(define_insn "*call_symbolic_struct_value_sp32" + [(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s")) + (match_operand 1 "" "")) + (match_operand 2 "immediate_operand" "") + (clobber (reg:SI O7_REG))] + ;;- Do not use operand 1 for most machines. + "TARGET_ARCH32 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 0" +{ + operands[2] = GEN_INT (INTVAL (operands[2]) & 0xfff); + return "call\t%a0, %1\n\t nop\n\tunimp\t%2"; +} + [(set_attr "type" "call_no_delay_slot") + (set_attr "length" "3")]) + +;; This is a call that may want a structure value. This is used for +;; untyped_calls. +(define_insn "*call_address_untyped_struct_value_sp32" + [(call (mem:SI (match_operand:SI 0 "address_operand" "p")) + (match_operand 1 "" "")) + (match_operand 2 "immediate_operand" "") + (clobber (reg:SI O7_REG))] + ;;- Do not use operand 1 for most machines. + "TARGET_ARCH32 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0" + "call\t%a0, %1\n\t nop\n\tnop" + [(set_attr "type" "call_no_delay_slot") + (set_attr "length" "3")]) + +;; This is a call that may want a structure value. This is used for +;; untyped_calls. +(define_insn "*call_symbolic_untyped_struct_value_sp32" + [(call (mem:SI (match_operand:SI 0 "symbolic_operand" "s")) + (match_operand 1 "" "")) + (match_operand 2 "immediate_operand" "") + (clobber (reg:SI O7_REG))] + ;;- Do not use operand 1 for most machines. + "TARGET_ARCH32 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0" + "call\t%a0, %1\n\t nop\n\tnop" + [(set_attr "type" "call_no_delay_slot") + (set_attr "length" "3")]) + +(define_expand "call_value" + ;; Note that this expression is not used for generating RTL. + ;; All the RTL is generated explicitly below. + [(set (match_operand 0 "register_operand" "") + (call (match_operand 1 "call_operand" "") + (match_operand 4 "" "")))] + ;; operand 2 is stack_size_rtx + ;; operand 3 is next_arg_register + "" +{ + rtx fn_rtx; + rtvec vec; + + gcc_assert (MEM_P (operands[1]) && GET_MODE (operands[1]) == FUNCTION_MODE); + + fn_rtx = operands[1]; + + vec = gen_rtvec (2, + gen_rtx_SET (operands[0], + gen_rtx_CALL (VOIDmode, fn_rtx, const0_rtx)), + gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))); + + sparc_emit_call_insn (gen_rtx_PARALLEL (VOIDmode, vec), XEXP (fn_rtx, 0)); + + DONE; +}) + +(define_insn "*call_value_address" + [(set (match_operand 0 "" "") + (call (mem:P (match_operand:P 1 "address_operand" "p")) + (match_operand 2 "" ""))) + (clobber (reg:P O7_REG))] + ;;- Do not use operand 2 for most machines. + "" + "call\t%a1, %2%#" + [(set_attr "type" "call")]) + +(define_insn "*call_value_symbolic" + [(set (match_operand 0 "" "") + (call (mem:P (match_operand:P 1 "symbolic_operand" "s")) + (match_operand 2 "" ""))) + (clobber (reg:P O7_REG))] + ;;- Do not use operand 2 for most machines. + "" + "call\t%a1, %2%#" + [(set_attr "type" "call")]) + +(define_expand "untyped_call" + [(parallel [(call (match_operand 0 "" "") + (const_int 0)) + (match_operand:BLK 1 "memory_operand" "") + (match_operand 2 "" "")])] + "" +{ + rtx valreg1 = gen_rtx_REG (DImode, 8); + rtx result = operands[1]; + + /* Pass constm1 to indicate that it may expect a structure value, but + we don't know what size it is. */ + emit_call_insn (gen_call (operands[0], const0_rtx, NULL, constm1_rtx)); + + /* Save the function value registers. */ + emit_move_insn (adjust_address (result, DImode, 0), valreg1); + if (TARGET_FPU) + { + rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); + emit_move_insn (adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8), + valreg2); + } + + /* The optimizer does not know that the call sets the function value + registers we stored in the result block. We avoid problems by + claiming that all hard registers are used and clobbered at this + point. */ + emit_insn (gen_blockage ()); + + DONE; +}) + + +;; Tail call instructions. + +(define_expand "sibcall" + [(parallel [(call (match_operand 0 "call_operand" "") (const_int 0)) + (return)])] + "" + "") + +(define_insn "*sibcall_symbolic" + [(call (mem:P (match_operand:P 0 "symbolic_operand" "s")) + (match_operand 1 "" "")) + (return)] + "" +{ + return output_sibcall (insn, operands[0]); +} + [(set_attr "type" "sibcall")]) + +(define_expand "sibcall_value" + [(parallel [(set (match_operand 0 "register_operand") + (call (match_operand 1 "call_operand" "") (const_int 0))) + (return)])] + "" + "") + +(define_insn "*sibcall_value_symbolic" + [(set (match_operand 0 "" "") + (call (mem:P (match_operand:P 1 "symbolic_operand" "s")) + (match_operand 2 "" ""))) + (return)] + "" +{ + return output_sibcall (insn, operands[1]); +} + [(set_attr "type" "sibcall")]) + + +;; Special instructions. + +(define_expand "prologue" + [(const_int 0)] + "" +{ + if (TARGET_FLAT) + sparc_flat_expand_prologue (); + else + sparc_expand_prologue (); + DONE; +}) + +;; The "register window save" insn is modelled as follows. The dwarf2 +;; information is manually added in emit_window_save. + +(define_insn "window_save" + [(unspec_volatile [(match_operand 0 "arith_operand" "rI")] UNSPECV_SAVEW)] + "!TARGET_FLAT" + "save\t%%sp, %0, %%sp" + [(set_attr "type" "savew")]) + +(define_expand "epilogue" + [(return)] + "" +{ + if (TARGET_FLAT) + sparc_flat_expand_epilogue (false); + else + sparc_expand_epilogue (false); +}) + +(define_expand "sibcall_epilogue" + [(return)] + "" +{ + if (TARGET_FLAT) + sparc_flat_expand_epilogue (false); + else + sparc_expand_epilogue (false); + DONE; +}) + +(define_expand "eh_return" + [(use (match_operand 0 "general_operand" ""))] + "" +{ + emit_move_insn (gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM), operands[0]); + emit_jump_insn (gen_eh_return_internal ()); + emit_barrier (); + DONE; +}) + +(define_insn_and_split "eh_return_internal" + [(eh_return)] + "" + "#" + "epilogue_completed" + [(return)] +{ + if (TARGET_FLAT) + sparc_flat_expand_epilogue (true); + else + sparc_expand_epilogue (true); +}) + +(define_expand "return" + [(return)] + "sparc_can_use_return_insn_p ()" +{ + if (cfun->calls_alloca) + emit_insn (gen_frame_blockage ()); +}) + +(define_insn "*return_internal" + [(return)] + "" +{ + return output_return (insn); +} + [(set_attr "type" "return") + (set (attr "length") + (cond [(eq_attr "calls_eh_return" "true") + (if_then_else (eq_attr "delayed_branch" "true") + (if_then_else (ior (eq_attr "isa" "v9") + (eq_attr "flat" "true")) + (const_int 2) + (const_int 3)) + (if_then_else (eq_attr "flat" "true") + (const_int 3) + (const_int 4))) + (ior (eq_attr "leaf_function" "true") (eq_attr "flat" "true")) + (if_then_else (eq_attr "empty_delay_slot" "true") + (const_int 2) + (const_int 1)) + (eq_attr "empty_delay_slot" "true") + (if_then_else (eq_attr "delayed_branch" "true") + (const_int 2) + (const_int 3)) + ] (const_int 1)))]) + +;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and +;; all of memory. This blocks insns from being moved across this point. + +(define_insn "blockage" + [(unspec_volatile [(const_int 0)] UNSPECV_BLOCKAGE)] + "" + "" + [(set_attr "length" "0")]) + +;; Do not schedule instructions accessing memory before this point. + +(define_expand "frame_blockage" + [(set (match_dup 0) + (unspec:BLK [(match_dup 1)] UNSPEC_FRAME_BLOCKAGE))] + "" +{ + operands[0] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); + MEM_VOLATILE_P (operands[0]) = 1; + operands[1] = stack_pointer_rtx; +}) + +(define_insn "*frame_blockage" + [(set (match_operand:BLK 0 "" "") + (unspec:BLK [(match_operand:P 1 "" "")] UNSPEC_FRAME_BLOCKAGE))] + "" + "" + [(set_attr "length" "0")]) + +;; We use membar #Sync for the speculation barrier on V9. + +(define_insn "speculation_barrier" + [(unspec_volatile [(const_int 0)] UNSPECV_SPECULATION_BARRIER)] + "TARGET_V9" + "membar\t64" + [(set_attr "type" "multi")]) + +(define_expand "probe_stack" + [(set (match_operand 0 "memory_operand" "") (const_int 0))] + "" +{ + operands[0] + = adjust_address (operands[0], GET_MODE (operands[0]), SPARC_STACK_BIAS); +}) + +(define_insn "probe_stack_range" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec_volatile:P [(match_operand:P 1 "register_operand" "0") + (match_operand:P 2 "register_operand" "r")] + UNSPECV_PROBE_STACK_RANGE))] + "" +{ + return output_probe_stack_range (operands[0], operands[2]); +} + [(set_attr "type" "multi")]) + +;; Prepare to return any type including a structure value. + +(define_expand "untyped_return" + [(match_operand:BLK 0 "memory_operand" "") + (match_operand 1 "" "")] + "" +{ + rtx valreg1 = gen_rtx_REG (DImode, 24); + rtx result = operands[0]; + + if (TARGET_ARCH32) + { + rtx rtnreg = gen_rtx_REG (SImode, RETURN_ADDR_REGNUM); + rtx value = gen_reg_rtx (SImode); + + /* Fetch the instruction where we will return to and see if it's an unimp + instruction (the most significant 10 bits will be zero). If so, + update the return address to skip the unimp instruction. */ + emit_move_insn (value, + gen_rtx_MEM (SImode, plus_constant (SImode, rtnreg, 8))); + emit_insn (gen_lshrsi3 (value, value, GEN_INT (22))); + emit_insn (gen_update_return (rtnreg, value)); + } + + /* Reload the function value registers. + Put USE insns before the return. */ + emit_move_insn (valreg1, adjust_address (result, DImode, 0)); + emit_use (valreg1); + + if (TARGET_FPU) + { + rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); + emit_move_insn (valreg2, + adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8)); + emit_use (valreg2); + } + + /* Construct the return. */ + expand_naked_return (); + + DONE; +}) + +;; Adjust the return address conditionally. If the value of op1 is equal +;; to all zero then adjust the return address i.e. op0 = op0 + 4. +;; This is technically *half* the check required by the 32-bit SPARC +;; psABI. This check only ensures that an "unimp" insn was written by +;; the caller, but doesn't check to see if the expected size matches +;; (this is encoded in the 12 lower bits). This check is obsolete and +;; only used by the above code "untyped_return". + +(define_insn "update_return" + [(unspec:SI [(match_operand:SI 0 "register_operand" "r") + (match_operand:SI 1 "register_operand" "r")] UNSPEC_UPDATE_RETURN)] + "TARGET_ARCH32" +{ + if (flag_delayed_branch) + return "cmp\t%1, 0\n\tbe,a\t.+8\n\t add\t%0, 4, %0"; + else + return "cmp\t%1, 0\n\tbne\t.+12\n\t nop\n\tadd\t%0, 4, %0"; +} + [(set (attr "type") (const_string "multi")) + (set (attr "length") + (if_then_else (eq_attr "delayed_branch" "true") + (const_int 3) + (const_int 4)))]) + +(define_insn "nop" + [(const_int 0)] + "" + "nop") + +(define_expand "indirect_jump" + [(set (pc) (match_operand 0 "address_operand" "p"))] + "" + "") + +(define_insn "*branch" + [(set (pc) (match_operand:P 0 "address_operand" "p"))] + "" + "jmp\t%a0%#" + [(set_attr "type" "uncond_branch")]) + +(define_expand "save_stack_nonlocal" + [(set (match_operand 0 "memory_operand" "") + (match_operand 1 "register_operand" "")) + (set (match_dup 2) (match_dup 3))] + "" +{ + operands[0] = adjust_address (operands[0], Pmode, 0); + operands[2] = adjust_address (operands[0], Pmode, GET_MODE_SIZE (Pmode)); + operands[3] = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); +}) + +(define_expand "restore_stack_nonlocal" + [(set (match_operand 0 "register_operand" "") + (match_operand 1 "memory_operand" ""))] + "" +{ + operands[1] = adjust_address (operands[1], Pmode, 0); +}) + +(define_expand "nonlocal_goto" + [(match_operand 0 "general_operand" "") + (match_operand 1 "general_operand" "") + (match_operand 2 "memory_operand" "") + (match_operand 3 "memory_operand" "")] + "" +{ + rtx i7 = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM); + rtx r_label = operands[1]; + rtx r_sp = adjust_address (operands[2], Pmode, 0); + rtx r_fp = operands[3]; + rtx r_i7 = adjust_address (operands[2], Pmode, GET_MODE_SIZE (Pmode)); + + /* We need to flush all the register windows so that their contents will + be re-synchronized by the restore insn of the target function. */ + if (!TARGET_FLAT) + emit_insn (gen_flush_register_windows ()); + + emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); + emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx)); + + r_label = copy_to_reg (r_label); + + /* Restore the frame pointer and stack pointer. We must use a + temporary since the setjmp buffer may be a local. */ + r_fp = copy_to_reg (r_fp); + emit_stack_restore (SAVE_NONLOCAL, r_sp); + r_i7 = copy_to_reg (r_i7); + + /* Ensure the frame pointer move is not optimized. */ + emit_insn (gen_blockage ()); + emit_clobber (hard_frame_pointer_rtx); + emit_move_insn (hard_frame_pointer_rtx, r_fp); + emit_move_insn (i7, r_i7); + + /* USE of hard_frame_pointer_rtx added for consistency; + not clear if really needed. */ + emit_use (hard_frame_pointer_rtx); + emit_use (stack_pointer_rtx); + emit_use (i7); + + emit_indirect_jump (r_label); + DONE; +}) + +(define_expand "builtin_setjmp_receiver" + [(label_ref (match_operand 0 "" ""))] + "TARGET_VXWORKS_RTP && flag_pic" +{ + load_got_register (); + DONE; +}) + +;; Special insn to flush register windows. + +(define_insn "flush_register_windows" + [(unspec_volatile [(const_int 0)] UNSPECV_FLUSHW)] + "" +{ + return TARGET_V9 ? "flushw" : "ta\t3"; +} + [(set_attr "type" "flushw")]) + +;; Special pattern for the FLUSH instruction. + +(define_insn "flush" + [(unspec_volatile [(match_operand:P 0 "memory_operand" "m")] UNSPECV_FLUSH)] + "" +{ + return TARGET_V9 ? "flush\t%f0" : "iflush\t%f0"; +} + [(set_attr "type" "iflush")]) + +;; Special insns to load and store the 32-bit FP Status Register. + +(define_insn "ldfsr" + [(unspec_volatile [(match_operand:SI 0 "memory_operand" "m")] UNSPECV_LDFSR)] + "TARGET_FPU" + "ld\t%0, %%fsr" + [(set_attr "type" "load") + (set_attr "subtype" "regular")]) + +(define_insn "stfsr" + [(set (match_operand:SI 0 "memory_operand" "=m") + (unspec_volatile:SI [(const_int 0)] UNSPECV_STFSR))] + "TARGET_FPU" + "st\t%%fsr, %0" + [(set_attr "type" "store")]) + + +;; Find first set instructions. + +(define_expand "popcountdi2" + [(set (match_operand:DI 0 "register_operand" "") + (popcount:DI (match_operand:DI 1 "register_operand" "")))] + "TARGET_POPC" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_popcountdi_v8plus (operands[0], operands[1])); + DONE; + } +}) + +(define_insn "*popcountdi_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (popcount:DI (match_operand:DI 1 "register_operand" "r")))] + "TARGET_POPC && TARGET_ARCH64" + "popc\t%1, %0") + +(define_insn "popcountdi_v8plus" + [(set (match_operand:DI 0 "register_operand" "=r") + (popcount:DI (match_operand:DI 1 "register_operand" "r"))) + (clobber (match_scratch:SI 2 "=&h"))] + "TARGET_POPC && TARGET_ARCH32" +{ + if (sparc_check_64 (operands[1], insn) <= 0) + output_asm_insn ("srl\t%L1, 0, %L1", operands); + return "sllx\t%H1, 32, %2\n\tor\t%L1, %2, %2\n\tpopc\t%2, %L0\n\tclr\t%H0"; +} + [(set_attr "type" "multi") + (set_attr "length" "5")]) + +(define_expand "popcountsi2" + [(set (match_dup 2) + (zero_extend:DI (match_operand:SI 1 "register_operand" ""))) + (set (match_operand:SI 0 "register_operand" "") + (truncate:SI (popcount:DI (match_dup 2))))] + "TARGET_POPC" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_popcountsi_v8plus (operands[0], operands[1])); + DONE; + } + else + operands[2] = gen_reg_rtx (DImode); +}) + +(define_insn "*popcountsi_sp64" + [(set (match_operand:SI 0 "register_operand" "=r") + (truncate:SI + (popcount:DI (match_operand:DI 1 "register_operand" "r"))))] + "TARGET_POPC && TARGET_ARCH64" + "popc\t%1, %0") + +(define_insn "popcountsi_v8plus" + [(set (match_operand:SI 0 "register_operand" "=r") + (popcount:SI (match_operand:SI 1 "register_operand" "r")))] + "TARGET_POPC && TARGET_ARCH32" +{ + if (sparc_check_64 (operands[1], insn) <= 0) + output_asm_insn ("srl\t%1, 0, %1", operands); + return "popc\t%1, %0"; +} + [(set_attr "type" "multi") + (set_attr "length" "2")]) + +(define_expand "clzdi2" + [(set (match_operand:DI 0 "register_operand" "") + (clz:DI (match_operand:DI 1 "register_operand" "")))] + "TARGET_VIS3" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_clzdi_v8plus (operands[0], operands[1])); + DONE; + } +}) + +(define_insn "*clzdi_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (clz:DI (match_operand:DI 1 "register_operand" "r")))] + "TARGET_VIS3 && TARGET_ARCH64" + "lzd\t%1, %0" + [(set_attr "type" "lzd")]) + +(define_insn "clzdi_v8plus" + [(set (match_operand:DI 0 "register_operand" "=r") + (clz:DI (match_operand:DI 1 "register_operand" "r"))) + (clobber (match_scratch:SI 2 "=&h"))] + "TARGET_VIS3 && TARGET_ARCH32" +{ + if (sparc_check_64 (operands[1], insn) <= 0) + output_asm_insn ("srl\t%L1, 0, %L1", operands); + return "sllx\t%H1, 32, %2\n\tor\t%L1, %2, %2\n\tlzd\t%2, %L0\n\tclr\t%H0"; +} + [(set_attr "type" "multi") + (set_attr "length" "5")]) + +(define_expand "clzsi2" + [(set (match_dup 2) + (zero_extend:DI (match_operand:SI 1 "register_operand" ""))) + (set (match_dup 3) + (truncate:SI (clz:DI (match_dup 2)))) + (set (match_operand:SI 0 "register_operand" "") + (minus:SI (match_dup 3) (const_int 32)))] + "TARGET_VIS3" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_clzsi_v8plus (operands[0], operands[1])); + DONE; + } + else + { + operands[2] = gen_reg_rtx (DImode); + operands[3] = gen_reg_rtx (SImode); + } +}) + +(define_insn "*clzsi_sp64" + [(set (match_operand:SI 0 "register_operand" "=r") + (truncate:SI + (clz:DI (match_operand:DI 1 "register_operand" "r"))))] + "TARGET_VIS3 && TARGET_ARCH64" + "lzd\t%1, %0" + [(set_attr "type" "lzd")]) + +(define_insn "clzsi_v8plus" + [(set (match_operand:SI 0 "register_operand" "=r") + (clz:SI (match_operand:SI 1 "register_operand" "r")))] + "TARGET_VIS3 && TARGET_ARCH32" +{ + if (sparc_check_64 (operands[1], insn) <= 0) + output_asm_insn ("srl\t%1, 0, %1", operands); + return "lzd\t%1, %0\n\tsub\t%0, 32, %0"; +} + [(set_attr "type" "multi") + (set_attr "length" "3")]) + + +;; Peepholes go at the end. + +;; Optimize consecutive loads or stores into ldd and std when possible. +;; The conditions in which we do this are very restricted and are +;; explained in the code for {registers,memory}_ok_for_ldd functions. + +(define_peephole2 + [(set (match_operand:SI 0 "memory_operand" "") + (const_int 0)) + (set (match_operand:SI 1 "memory_operand" "") + (const_int 0))] + "TARGET_V9 + && mems_ok_for_ldd_peep (operands[0], operands[1], NULL_RTX)" + [(set (match_dup 0) (const_int 0))] +{ + operands[0] = widen_mem_for_ldd_peep (operands[0], operands[1], DImode); +}) + +(define_peephole2 + [(set (match_operand:SI 0 "memory_operand" "") + (const_int 0)) + (set (match_operand:SI 1 "memory_operand" "") + (const_int 0))] + "TARGET_V9 + && mems_ok_for_ldd_peep (operands[1], operands[0], NULL_RTX)" + [(set (match_dup 1) (const_int 0))] +{ + operands[1] = widen_mem_for_ldd_peep (operands[1], operands[0], DImode); +}) + +(define_peephole2 + [(set (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "memory_operand" "")) + (set (match_operand:SI 2 "register_operand" "") + (match_operand:SI 3 "memory_operand" ""))] + "registers_ok_for_ldd_peep (operands[0], operands[2]) + && mems_ok_for_ldd_peep (operands[1], operands[3], operands[0])" + [(set (match_dup 0) (match_dup 1))] +{ + operands[1] = widen_mem_for_ldd_peep (operands[1], operands[3], DImode); + operands[0] = gen_rtx_REG (DImode, REGNO (operands[0])); +}) + +(define_peephole2 + [(set (match_operand:SI 0 "memory_operand" "") + (match_operand:SI 1 "register_operand" "")) + (set (match_operand:SI 2 "memory_operand" "") + (match_operand:SI 3 "register_operand" ""))] + "registers_ok_for_ldd_peep (operands[1], operands[3]) + && mems_ok_for_ldd_peep (operands[0], operands[2], NULL_RTX)" + [(set (match_dup 0) (match_dup 1))] +{ + operands[0] = widen_mem_for_ldd_peep (operands[0], operands[2], DImode); + operands[1] = gen_rtx_REG (DImode, REGNO (operands[1])); +}) + +(define_peephole2 + [(set (match_operand:SF 0 "register_operand" "") + (match_operand:SF 1 "memory_operand" "")) + (set (match_operand:SF 2 "register_operand" "") + (match_operand:SF 3 "memory_operand" ""))] + "registers_ok_for_ldd_peep (operands[0], operands[2]) + && mems_ok_for_ldd_peep (operands[1], operands[3], operands[0])" + [(set (match_dup 0) (match_dup 1))] +{ + operands[1] = widen_mem_for_ldd_peep (operands[1], operands[3], DFmode); + operands[0] = gen_rtx_REG (DFmode, REGNO (operands[0])); +}) + +(define_peephole2 + [(set (match_operand:SF 0 "memory_operand" "") + (match_operand:SF 1 "register_operand" "")) + (set (match_operand:SF 2 "memory_operand" "") + (match_operand:SF 3 "register_operand" ""))] + "registers_ok_for_ldd_peep (operands[1], operands[3]) + && mems_ok_for_ldd_peep (operands[0], operands[2], NULL_RTX)" + [(set (match_dup 0) (match_dup 1))] +{ + operands[0] = widen_mem_for_ldd_peep (operands[0], operands[2], DFmode); + operands[1] = gen_rtx_REG (DFmode, REGNO (operands[1])); +}) + +(define_peephole2 + [(set (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "memory_operand" "")) + (set (match_operand:SI 2 "register_operand" "") + (match_operand:SI 3 "memory_operand" ""))] + "registers_ok_for_ldd_peep (operands[2], operands[0]) + && mems_ok_for_ldd_peep (operands[3], operands[1], operands[0])" + [(set (match_dup 2) (match_dup 3))] +{ + operands[3] = widen_mem_for_ldd_peep (operands[3], operands[1], DImode); + operands[2] = gen_rtx_REG (DImode, REGNO (operands[2])); +}) + +(define_peephole2 + [(set (match_operand:SI 0 "memory_operand" "") + (match_operand:SI 1 "register_operand" "")) + (set (match_operand:SI 2 "memory_operand" "") + (match_operand:SI 3 "register_operand" ""))] + "registers_ok_for_ldd_peep (operands[3], operands[1]) + && mems_ok_for_ldd_peep (operands[2], operands[0], NULL_RTX)" + [(set (match_dup 2) (match_dup 3))] +{ + operands[2] = widen_mem_for_ldd_peep (operands[2], operands[0], DImode); + operands[3] = gen_rtx_REG (DImode, REGNO (operands[3])); +}) + +(define_peephole2 + [(set (match_operand:SF 0 "register_operand" "") + (match_operand:SF 1 "memory_operand" "")) + (set (match_operand:SF 2 "register_operand" "") + (match_operand:SF 3 "memory_operand" ""))] + "registers_ok_for_ldd_peep (operands[2], operands[0]) + && mems_ok_for_ldd_peep (operands[3], operands[1], operands[0])" + [(set (match_dup 2) (match_dup 3))] +{ + operands[3] = widen_mem_for_ldd_peep (operands[3], operands[1], DFmode); + operands[2] = gen_rtx_REG (DFmode, REGNO (operands[2])); +}) + +(define_peephole2 + [(set (match_operand:SF 0 "memory_operand" "") + (match_operand:SF 1 "register_operand" "")) + (set (match_operand:SF 2 "memory_operand" "") + (match_operand:SF 3 "register_operand" ""))] + "registers_ok_for_ldd_peep (operands[3], operands[1]) + && mems_ok_for_ldd_peep (operands[2], operands[0], NULL_RTX)" + [(set (match_dup 2) (match_dup 3))] +{ + operands[2] = widen_mem_for_ldd_peep (operands[2], operands[0], DFmode); + operands[3] = gen_rtx_REG (DFmode, REGNO (operands[3])); +}) + +;; Optimize the case of following a reg-reg move with a test +;; of reg just moved. Don't allow floating point regs for operand 0 or 1. +;; This can result from a float to fix conversion. + +(define_peephole2 + [(set (match_operand:SI 0 "register_operand" "") + (match_operand:SI 1 "register_operand" "")) + (set (reg:CC CC_REG) + (compare:CC (match_operand:SI 2 "register_operand" "") + (const_int 0)))] + "(rtx_equal_p (operands[2], operands[0]) + || rtx_equal_p (operands[2], operands[1])) + && !SPARC_FP_REG_P (REGNO (operands[0])) + && !SPARC_FP_REG_P (REGNO (operands[1]))" + [(parallel [(set (match_dup 0) (match_dup 1)) + (set (reg:CC CC_REG) + (compare:CC (match_dup 1) (const_int 0)))])] + "") + +(define_peephole2 + [(set (match_operand:DI 0 "register_operand" "") + (match_operand:DI 1 "register_operand" "")) + (set (reg:CCX CC_REG) + (compare:CCX (match_operand:DI 2 "register_operand" "") + (const_int 0)))] + "TARGET_ARCH64 + && (rtx_equal_p (operands[2], operands[0]) + || rtx_equal_p (operands[2], operands[1])) + && !SPARC_FP_REG_P (REGNO (operands[0])) + && !SPARC_FP_REG_P (REGNO (operands[1]))" + [(parallel [(set (match_dup 0) (match_dup 1)) + (set (reg:CCX CC_REG) + (compare:CCX (match_dup 1) (const_int 0)))])] + "") + + +;; Prefetch instructions. + +;; ??? UltraSPARC-III note: A memory operation loading into the floating point +;; register file, if it hits the prefetch cache, has a chance to dual-issue +;; with other memory operations. With DFA we might be able to model this, +;; but it requires a lot of state. +(define_expand "prefetch" + [(match_operand 0 "address_operand" "") + (match_operand 1 "const_int_operand" "") + (match_operand 2 "const_int_operand" "")] + "TARGET_V9" +{ + if (TARGET_ARCH64) + emit_insn (gen_prefetch_64 (operands[0], operands[1], operands[2])); + else + emit_insn (gen_prefetch_32 (operands[0], operands[1], operands[2])); + DONE; +}) + +(define_insn "prefetch_64" + [(prefetch (match_operand:DI 0 "address_operand" "p") + (match_operand:DI 1 "const_int_operand" "n") + (match_operand:DI 2 "const_int_operand" "n"))] + "" +{ + static const char * const prefetch_instr[2][2] = { + { + "prefetch\t[%a0], 1", /* no locality: prefetch for one read */ + "prefetch\t[%a0], 0", /* medium to high locality: prefetch for several reads */ + }, + { + "prefetch\t[%a0], 3", /* no locality: prefetch for one write */ + "prefetch\t[%a0], 2", /* medium to high locality: prefetch for several writes */ + } + }; + int read_or_write = INTVAL (operands[1]); + int locality = INTVAL (operands[2]); + + gcc_assert (read_or_write == 0 || read_or_write == 1); + gcc_assert (locality >= 0 && locality < 4); + return prefetch_instr [read_or_write][locality == 0 ? 0 : 1]; +} + [(set_attr "type" "load") + (set_attr "subtype" "prefetch")]) + +(define_insn "prefetch_32" + [(prefetch (match_operand:SI 0 "address_operand" "p") + (match_operand:SI 1 "const_int_operand" "n") + (match_operand:SI 2 "const_int_operand" "n"))] + "" +{ + static const char * const prefetch_instr[2][2] = { + { + "prefetch\t[%a0], 1", /* no locality: prefetch for one read */ + "prefetch\t[%a0], 0", /* medium to high locality: prefetch for several reads */ + }, + { + "prefetch\t[%a0], 3", /* no locality: prefetch for one write */ + "prefetch\t[%a0], 2", /* medium to high locality: prefetch for several writes */ + } + }; + int read_or_write = INTVAL (operands[1]); + int locality = INTVAL (operands[2]); + + gcc_assert (read_or_write == 0 || read_or_write == 1); + gcc_assert (locality >= 0 && locality < 4); + return prefetch_instr [read_or_write][locality == 0 ? 0 : 1]; +} + [(set_attr "type" "load") + (set_attr "subtype" "prefetch")]) + + +;; Trap instructions. + +(define_insn "trap" + [(trap_if (const_int 1) (const_int 5))] + "" + "ta\t5" + [(set_attr "type" "trap")]) + +(define_expand "ctrapsi4" + [(trap_if (match_operator 0 "comparison_operator" + [(match_operand:SI 1 "compare_operand" "") + (match_operand:SI 2 "arith_operand" "")]) + (match_operand 3 "arith_operand"))] + "" +{ + operands[1] = gen_compare_reg (operands[0]); + if (GET_MODE (operands[1]) != CCmode && GET_MODE (operands[1]) != CCXmode) + FAIL; + operands[2] = const0_rtx; +}) + +(define_expand "ctrapdi4" + [(trap_if (match_operator 0 "comparison_operator" + [(match_operand:DI 1 "compare_operand" "") + (match_operand:DI 2 "arith_operand" "")]) + (match_operand 3 "arith_operand"))] + "TARGET_ARCH64" +{ + operands[1] = gen_compare_reg (operands[0]); + if (GET_MODE (operands[1]) != CCmode && GET_MODE (operands[1]) != CCXmode) + FAIL; + operands[2] = const0_rtx; +}) + +(define_insn "*trapsi_insn" + [(trap_if (match_operator 0 "icc_comparison_operator" + [(reg:CC CC_REG) (const_int 0)]) + (match_operand:SI 1 "arith_operand" "rM"))] + "" +{ + if (TARGET_V9) + return "t%C0\t%%icc, %1"; + else + return "t%C0\t%1"; +} + [(set_attr "type" "trap")]) + +(define_insn "*trapdi_insn" + [(trap_if (match_operator 0 "icc_comparison_operator" + [(reg:CCX CC_REG) (const_int 0)]) + (match_operand:SI 1 "arith_operand" "rM"))] + "TARGET_V9" + "t%C0\t%%xcc, %1" + [(set_attr "type" "trap")]) + + +;; TLS support instructions. + +(define_insn "tgd_hi22" + [(set (match_operand:P 0 "register_operand" "=r") + (high:P (unspec:P [(match_operand 1 "tgd_symbolic_operand" "")] + UNSPEC_TLSGD)))] + "TARGET_TLS" + "sethi\\t%%tgd_hi22(%a1), %0") + +(define_insn "tgd_lo10" + [(set (match_operand:P 0 "register_operand" "=r") + (lo_sum:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(match_operand 2 "tgd_symbolic_operand" "")] + UNSPEC_TLSGD)))] + "TARGET_TLS" + "add\\t%1, %%tgd_lo10(%a2), %0") + +(define_insn "tgd_add" + [(set (match_operand:P 0 "register_operand" "=r") + (plus:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tgd_symbolic_operand" "")] + UNSPEC_TLSGD)))] + "TARGET_TLS" + "add\\t%1, %2, %0, %%tgd_add(%a3)") + +(define_insn "tgd_call" + [(set (match_operand 0 "register_operand" "=r") + (call (mem:P (unspec:P [(match_operand:P 1 "symbolic_operand" "s") + (match_operand 2 "tgd_symbolic_operand" "")] + UNSPEC_TLSGD)) + (match_operand 3 "" ""))) + (clobber (reg:P O7_REG))] + "TARGET_TLS" + "call\t%a1, %%tgd_call(%a2)%#" + [(set (attr "type") (if_then_else (eq_attr "tls_delay_slot" "true") + (const_string "call") + (const_string "call_no_delay_slot")))]) + +(define_insn "tldm_hi22" + [(set (match_operand:P 0 "register_operand" "=r") + (high:P (unspec:P [(const_int 0)] UNSPEC_TLSLDM)))] + "TARGET_TLS" + "sethi\\t%%tldm_hi22(%&), %0") + +(define_insn "tldm_lo10" + [(set (match_operand:P 0 "register_operand" "=r") + (lo_sum:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(const_int 0)] UNSPEC_TLSLDM)))] + "TARGET_TLS" + "add\\t%1, %%tldm_lo10(%&), %0") + +(define_insn "tldm_add" + [(set (match_operand:P 0 "register_operand" "=r") + (plus:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(match_operand:P 2 "register_operand" "r")] + UNSPEC_TLSLDM)))] + "TARGET_TLS" + "add\\t%1, %2, %0, %%tldm_add(%&)") + +(define_insn "tldm_call" + [(set (match_operand 0 "register_operand" "=r") + (call (mem:P (unspec:P [(match_operand:P 1 "symbolic_operand" "s")] + UNSPEC_TLSLDM)) + (match_operand 2 "" ""))) + (clobber (reg:P O7_REG))] + "TARGET_TLS" + "call\t%a1, %%tldm_call(%&)%#" + [(set (attr "type") (if_then_else (eq_attr "tls_delay_slot" "true") + (const_string "call") + (const_string "call_no_delay_slot")))]) + +(define_insn "tldo_hix22" + [(set (match_operand:P 0 "register_operand" "=r") + (high:P (unspec:P [(match_operand 1 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO)))] + "TARGET_TLS" + "sethi\\t%%tldo_hix22(%a1), %0") + +(define_insn "tldo_lox10" + [(set (match_operand:P 0 "register_operand" "=r") + (lo_sum:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(match_operand 2 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO)))] + "TARGET_TLS" + "xor\\t%1, %%tldo_lox10(%a2), %0") + +(define_insn "tldo_add" + [(set (match_operand:P 0 "register_operand" "=r") + (plus:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO)))] + "TARGET_TLS" + "add\\t%1, %2, %0, %%tldo_add(%a3)") + +(define_insn "tie_hi22" + [(set (match_operand:P 0 "register_operand" "=r") + (high:P (unspec:P [(match_operand 1 "tie_symbolic_operand" "")] + UNSPEC_TLSIE)))] + "TARGET_TLS" + "sethi\\t%%tie_hi22(%a1), %0") + +(define_insn "tie_lo10" + [(set (match_operand:P 0 "register_operand" "=r") + (lo_sum:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(match_operand 2 "tie_symbolic_operand" "")] + UNSPEC_TLSIE)))] + "TARGET_TLS" + "add\\t%1, %%tie_lo10(%a2), %0") + +; Note the %%tie_ld operator +(define_insn "tie_ld32" + [(set (match_operand:SI 0 "register_operand" "=r") + (unspec:SI [(match_operand:SI 1 "register_operand" "r") + (match_operand:SI 2 "register_operand" "r") + (match_operand 3 "tie_symbolic_operand" "")] + UNSPEC_TLSIE))] + "TARGET_TLS && TARGET_ARCH32" + "ld\\t[%1 + %2], %0, %%tie_ld(%a3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular")]) + +; Note the %%tie_ldx operator +(define_insn "tie_ld64" + [(set (match_operand:DI 0 "register_operand" "=r") + (unspec:DI [(match_operand:DI 1 "register_operand" "r") + (match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tie_symbolic_operand" "")] + UNSPEC_TLSIE))] + "TARGET_TLS && TARGET_ARCH64" + "ldx\\t[%1 + %2], %0, %%tie_ldx(%a3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular")]) + +(define_insn "tie_add" + [(set (match_operand:P 0 "register_operand" "=r") + (plus:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tie_symbolic_operand" "")] + UNSPEC_TLSIE)))] + "TARGET_SUN_TLS" + "add\\t%1, %2, %0, %%tie_add(%a3)") + +(define_insn "tle_hix22" + [(set (match_operand:P 0 "register_operand" "=r") + (high:P (unspec:P [(match_operand 1 "tle_symbolic_operand" "")] + UNSPEC_TLSLE)))] + "TARGET_TLS" + "sethi\\t%%tle_hix22(%a1), %0") + +(define_insn "tle_lox10" + [(set (match_operand:P 0 "register_operand" "=r") + (lo_sum:P (match_operand:P 1 "register_operand" "r") + (unspec:P [(match_operand 2 "tle_symbolic_operand" "")] + UNSPEC_TLSLE)))] + "TARGET_TLS" + "xor\\t%1, %%tle_lox10(%a2), %0") + +;; Now patterns combining tldo_add with some integer loads or stores +(define_insn "*tldo_ldub" + [(set (match_operand:QI 0 "register_operand" "=r") + (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r"))))] + "TARGET_TLS" + "ldub\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldub1" + [(set (match_operand:HI 0 "register_operand" "=r") + (zero_extend:HI + (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r")))))] + "TARGET_TLS" + "ldub\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldub2" + [(set (match_operand:SI 0 "register_operand" "=r") + (zero_extend:SI + (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r")))))] + "TARGET_TLS" + "ldub\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldsb1" + [(set (match_operand:HI 0 "register_operand" "=r") + (sign_extend:HI + (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r")))))] + "TARGET_TLS" + "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldsb2" + [(set (match_operand:SI 0 "register_operand" "=r") + (sign_extend:SI + (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r")))))] + "TARGET_TLS" + "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldub3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI + (mem:QI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:DI 1 "register_operand" "r")))))] + "TARGET_TLS && TARGET_ARCH64" + "ldub\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldsb3_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extend:DI + (mem:QI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:DI 1 "register_operand" "r")))))] + "TARGET_TLS && TARGET_ARCH64" + "ldsb\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_lduh" + [(set (match_operand:HI 0 "register_operand" "=r") + (mem:HI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r"))))] + "TARGET_TLS" + "lduh\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_lduh1" + [(set (match_operand:SI 0 "register_operand" "=r") + (zero_extend:SI + (mem:HI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r")))))] + "TARGET_TLS" + "lduh\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldsh1" + [(set (match_operand:SI 0 "register_operand" "=r") + (sign_extend:SI + (mem:HI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r")))))] + "TARGET_TLS" + "ldsh\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_lduh2_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI + (mem:HI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:DI 1 "register_operand" "r")))))] + "TARGET_TLS && TARGET_ARCH64" + "lduh\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldsh2_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extend:DI + (mem:HI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:DI 1 "register_operand" "r")))))] + "TARGET_TLS && TARGET_ARCH64" + "ldsh\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_lduw" + [(set (match_operand:SI 0 "register_operand" "=r") + (mem:SI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r"))))] + "TARGET_TLS" + "ld\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular")]) + +(define_insn "*tldo_lduw1_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (zero_extend:DI + (mem:SI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:DI 1 "register_operand" "r")))))] + "TARGET_TLS && TARGET_ARCH64" + "lduw\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular")]) + +(define_insn "*tldo_ldsw1_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (sign_extend:DI + (mem:SI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:DI 1 "register_operand" "r")))))] + "TARGET_TLS && TARGET_ARCH64" + "ldsw\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "sload") + (set_attr "us3load_type" "3cycle")]) + +(define_insn "*tldo_ldx_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") + (mem:DI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:DI 1 "register_operand" "r"))))] + "TARGET_TLS && TARGET_ARCH64" + "ldx\t[%1 + %2], %0, %%tldo_add(%3)" + [(set_attr "type" "load") + (set_attr "subtype" "regular")]) + +(define_insn "*tldo_stb" + [(set (mem:QI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r"))) + (match_operand:QI 0 "register_operand" "r"))] + "TARGET_TLS" + "stb\t%0, [%1 + %2], %%tldo_add(%3)" + [(set_attr "type" "store")]) + +(define_insn "*tldo_sth" + [(set (mem:HI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r"))) + (match_operand:HI 0 "register_operand" "r"))] + "TARGET_TLS" + "sth\t%0, [%1 + %2], %%tldo_add(%3)" + [(set_attr "type" "store")]) + +(define_insn "*tldo_stw" + [(set (mem:SI (plus:P (unspec:P [(match_operand:P 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:P 1 "register_operand" "r"))) + (match_operand:SI 0 "register_operand" "r"))] + "TARGET_TLS" + "st\t%0, [%1 + %2], %%tldo_add(%3)" + [(set_attr "type" "store")]) + +(define_insn "*tldo_stx_sp64" + [(set (mem:DI (plus:DI (unspec:DI [(match_operand:DI 2 "register_operand" "r") + (match_operand 3 "tld_symbolic_operand" "")] + UNSPEC_TLSLDO) + (match_operand:DI 1 "register_operand" "r"))) + (match_operand:DI 0 "register_operand" "r"))] + "TARGET_TLS && TARGET_ARCH64" + "stx\t%0, [%1 + %2], %%tldo_add(%3)" + [(set_attr "type" "store")]) + + +;; Stack protector instructions. + +(define_expand "stack_protect_set" + [(match_operand 0 "memory_operand" "") + (match_operand 1 "memory_operand" "")] + "" +{ +#ifdef TARGET_THREAD_SSP_OFFSET + rtx tlsreg = gen_rtx_REG (Pmode, 7); + rtx addr = gen_rtx_PLUS (Pmode, tlsreg, GEN_INT (TARGET_THREAD_SSP_OFFSET)); + operands[1] = gen_rtx_MEM (Pmode, addr); +#endif + if (TARGET_ARCH64) + emit_insn (gen_stack_protect_setdi (operands[0], operands[1])); + else + emit_insn (gen_stack_protect_setsi (operands[0], operands[1])); + DONE; +}) + +(define_insn "stack_protect_setsi" + [(set (match_operand:SI 0 "memory_operand" "=m") + (unspec:SI [(match_operand:SI 1 "memory_operand" "m")] UNSPEC_SP_SET)) + (set (match_scratch:SI 2 "=&r") (const_int 0))] + "TARGET_ARCH32" + "ld\t%1, %2\;st\t%2, %0\;mov\t0, %2" + [(set_attr "type" "multi") + (set_attr "length" "3")]) + +(define_insn "stack_protect_setdi" + [(set (match_operand:DI 0 "memory_operand" "=m") + (unspec:DI [(match_operand:DI 1 "memory_operand" "m")] UNSPEC_SP_SET)) + (set (match_scratch:DI 2 "=&r") (const_int 0))] + "TARGET_ARCH64" + "ldx\t%1, %2\;stx\t%2, %0\;mov\t0, %2" + [(set_attr "type" "multi") + (set_attr "length" "3")]) + +(define_expand "stack_protect_test" + [(match_operand 0 "memory_operand" "") + (match_operand 1 "memory_operand" "") + (match_operand 2 "" "")] + "" +{ + rtx result, test; +#ifdef TARGET_THREAD_SSP_OFFSET + rtx tlsreg = gen_rtx_REG (Pmode, 7); + rtx addr = gen_rtx_PLUS (Pmode, tlsreg, GEN_INT (TARGET_THREAD_SSP_OFFSET)); + operands[1] = gen_rtx_MEM (Pmode, addr); +#endif + if (TARGET_ARCH64) + { + result = gen_reg_rtx (Pmode); + emit_insn (gen_stack_protect_testdi (result, operands[0], operands[1])); + test = gen_rtx_EQ (VOIDmode, result, const0_rtx); + emit_jump_insn (gen_cbranchdi4 (test, result, const0_rtx, operands[2])); + } + else + { + emit_insn (gen_stack_protect_testsi (operands[0], operands[1])); + result = gen_rtx_REG (CCmode, SPARC_ICC_REG); + test = gen_rtx_EQ (VOIDmode, result, const0_rtx); + emit_jump_insn (gen_cbranchcc4 (test, result, const0_rtx, operands[2])); + } + DONE; +}) + +(define_insn "stack_protect_testsi" + [(set (reg:CC CC_REG) + (unspec:CC [(match_operand:SI 0 "memory_operand" "m") + (match_operand:SI 1 "memory_operand" "m")] + UNSPEC_SP_TEST)) + (set (match_scratch:SI 3 "=r") (const_int 0)) + (clobber (match_scratch:SI 2 "=&r"))] + "TARGET_ARCH32" + "ld\t%0, %2\;ld\t%1, %3\;xorcc\t%2, %3, %2\;mov\t0, %3" + [(set_attr "type" "multi") + (set_attr "length" "4")]) + +(define_insn "stack_protect_testdi" + [(set (match_operand:DI 0 "register_operand" "=&r") + (unspec:DI [(match_operand:DI 1 "memory_operand" "m") + (match_operand:DI 2 "memory_operand" "m")] + UNSPEC_SP_TEST)) + (set (match_scratch:DI 3 "=r") (const_int 0))] + "TARGET_ARCH64" + "ldx\t%1, %0\;ldx\t%2, %3\;xor\t%0, %3, %0\;mov\t0, %3" + [(set_attr "type" "multi") + (set_attr "length" "4")]) + + +;; Vector instructions. + +(define_mode_iterator VM32 [V1SI V2HI V4QI]) +(define_mode_iterator VM64 [V1DI V2SI V4HI V8QI]) +(define_mode_iterator VMALL [V1SI V2HI V4QI V1DI V2SI V4HI V8QI]) + +(define_mode_attr vbits [(V2SI "32") (V4HI "16") (V1SI "32s") (V2HI "16s") + (V8QI "8")]) +(define_mode_attr vconstr [(V1SI "f") (V2HI "f") (V4QI "f") + (V1DI "e") (V2SI "e") (V4HI "e") (V8QI "e")]) +(define_mode_attr vfptype [(V1SI "single") (V2HI "single") (V4QI "single") + (V1DI "double") (V2SI "double") (V4HI "double") + (V8QI "double")]) +(define_mode_attr veltmode [(V1SI "si") (V2HI "hi") (V4QI "qi") (V1DI "di") + (V2SI "si") (V4HI "hi") (V8QI "qi")]) + +(define_expand "mov" + [(set (match_operand:VMALL 0 "nonimmediate_operand" "") + (match_operand:VMALL 1 "general_operand" ""))] + "TARGET_VIS" +{ + if (sparc_expand_move (mode, operands)) + DONE; +}) + +(define_insn "*mov_insn" + [(set (match_operand:VM32 0 "nonimmediate_operand" "=f,f,f,f,m,m,*r, m,*r,*r, f") + (match_operand:VM32 1 "input_operand" "Y,Z,f,m,f,Y, m,*r,*r, f,*r"))] + "TARGET_VIS + && (register_operand (operands[0], mode) + || register_or_zero_or_all_ones_operand (operands[1], mode))" + "@ + fzeros\t%0 + fones\t%0 + fsrc2s\t%1, %0 + ld\t%1, %0 + st\t%1, %0 + st\t%r1, %0 + ld\t%1, %0 + st\t%1, %0 + mov\t%1, %0 + movstouw\t%1, %0 + movwtos\t%1, %0" + [(set_attr "type" "visl,visl,vismv,fpload,fpstore,store,load,store,*,vismv,vismv") + (set_attr "subtype" "single,single,single,*,*,*,regular,*,*,movstouw,single") + (set_attr "cpu_feature" "vis,vis,vis,*,*,*,*,*,*,vis3,vis3")]) + +(define_insn "*mov_insn_sp64" + [(set (match_operand:VM64 0 "nonimmediate_operand" "=e,e,e,e,W,m,*r, m,*r, e,*r") + (match_operand:VM64 1 "input_operand" "Y,Z,e,W,e,Y, m,*r, e,*r,*r"))] + "TARGET_VIS + && TARGET_ARCH64 + && (register_operand (operands[0], mode) + || register_or_zero_or_all_ones_operand (operands[1], mode))" + "@ + fzero\t%0 + fone\t%0 + fsrc2\t%1, %0 + ldd\t%1, %0 + std\t%1, %0 + stx\t%r1, %0 + ldx\t%1, %0 + stx\t%1, %0 + movdtox\t%1, %0 + movxtod\t%1, %0 + mov\t%1, %0" + [(set_attr "type" "visl,visl,vismv,fpload,fpstore,store,load,store,vismv,vismv,*") + (set_attr "subtype" "double,double,double,*,*,*,regular,*,movdtox,movxtod,*") + (set_attr "cpu_feature" "vis,vis,vis,*,*,*,*,*,vis3,vis3,*")]) + +(define_insn "*mov_insn_sp32" + [(set (match_operand:VM64 0 "nonimmediate_operand" + "=T,o,e,e,e,*r, f,e,T,U,T,f,o,*r,*r, o") + (match_operand:VM64 1 "input_operand" + " Y,Y,Y,Z,e, f,*r,T,e,T,U,o,f,*r, o,*r"))] + "TARGET_VIS + && TARGET_ARCH32 + && (register_operand (operands[0], mode) + || register_or_zero_or_all_ones_operand (operands[1], mode))" + "@ + stx\t%r1, %0 + # + fzero\t%0 + fone\t%0 + fsrc2\t%1, %0 + # + # + ldd\t%1, %0 + std\t%1, %0 + ldd\t%1, %0 + std\t%1, %0 + # + # + # + ldd\t%1, %0 + std\t%1, %0" + [(set_attr "type" "store,*,visl,visl,vismv,*,*,fpload,fpstore,load,store,*,*,*,load,store") + (set_attr "subtype" "*,*,double,double,double,*,*,*,*,regular,*,*,*,*,regular,*") + (set_attr "length" "*,2,*,*,*,2,2,*,*,*,*,2,2,2,*,*") + (set_attr "cpu_feature" "*,*,vis,vis,vis,vis3,vis3,*,*,*,*,*,*,*,*,*") + (set_attr "lra" "*,*,*,*,*,*,*,*,*,disabled,disabled,*,*,*,*,*")]) + +(define_split + [(set (match_operand:VM64 0 "register_operand" "") + (match_operand:VM64 1 "register_operand" ""))] + "reload_completed + && TARGET_VIS + && TARGET_ARCH32 + && sparc_split_reg_reg_legitimate (operands[0], operands[1])" + [(clobber (const_int 0))] +{ + sparc_split_reg_reg (operands[0], operands[1], SImode); + DONE; +}) + +(define_split + [(set (match_operand:VM64 0 "register_operand" "") + (match_operand:VM64 1 "memory_operand" ""))] + "reload_completed + && TARGET_VIS + && TARGET_ARCH32 + && sparc_split_reg_mem_legitimate (operands[0], operands[1])" + [(clobber (const_int 0))] +{ + sparc_split_reg_mem (operands[0], operands[1], SImode); + DONE; +}) + +(define_split + [(set (match_operand:VM64 0 "memory_operand" "") + (match_operand:VM64 1 "register_operand" ""))] + "reload_completed + && TARGET_VIS + && TARGET_ARCH32 + && sparc_split_reg_mem_legitimate (operands[1], operands[0])" + [(clobber (const_int 0))] +{ + sparc_split_mem_reg (operands[0], operands[1], SImode); + DONE; +}) + +(define_split + [(set (match_operand:VM64 0 "memory_operand" "") + (match_operand:VM64 1 "const_zero_operand" ""))] + "reload_completed + && TARGET_VIS + && TARGET_ARCH32 + && !mem_min_alignment (operands[0], 8) + && offsettable_memref_p (operands[0])" + [(clobber (const_int 0))] +{ + emit_move_insn_1 (adjust_address (operands[0], SImode, 0), const0_rtx); + emit_move_insn_1 (adjust_address (operands[0], SImode, 4), const0_rtx); + DONE; +}) + +(define_expand "vec_init" + [(match_operand:VMALL 0 "register_operand" "") + (match_operand:VMALL 1 "" "")] + "TARGET_VIS" +{ + sparc_expand_vector_init (operands[0], operands[1]); + DONE; +}) + +(define_code_iterator plusminus [plus minus]) +(define_code_attr plusminus_insn [(plus "add") (minus "sub")]) + +(define_mode_iterator VADDSUB [V1SI V2SI V2HI V4HI]) + +(define_insn "3" + [(set (match_operand:VADDSUB 0 "register_operand" "=") + (plusminus:VADDSUB (match_operand:VADDSUB 1 "register_operand" "") + (match_operand:VADDSUB 2 "register_operand" "")))] + "TARGET_VIS" + "fp\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "other") + (set_attr "fptype" "")]) + +(define_mode_iterator VL [V1SI V2HI V4QI V1DI V2SI V4HI V8QI]) +(define_mode_attr vlsuf [(V1SI "s") (V2HI "s") (V4QI "s") + (V1DI "") (V2SI "") (V4HI "") (V8QI "")]) +(define_code_iterator vlop [ior and xor]) +(define_code_attr vlinsn [(ior "or") (and "and") (xor "xor")]) +(define_code_attr vlninsn [(ior "nor") (and "nand") (xor "xnor")]) + +(define_insn "3" + [(set (match_operand:VL 0 "register_operand" "=") + (vlop:VL (match_operand:VL 1 "register_operand" "") + (match_operand:VL 2 "register_operand" "")))] + "TARGET_VIS" + "f\t%1, %2, %0" + [(set_attr "type" "visl") + (set_attr "fptype" "")]) + +(define_insn "*not_3" + [(set (match_operand:VL 0 "register_operand" "=") + (not:VL (vlop:VL (match_operand:VL 1 "register_operand" "") + (match_operand:VL 2 "register_operand" ""))))] + "TARGET_VIS" + "f\t%1, %2, %0" + [(set_attr "type" "visl") + (set_attr "fptype" "")]) + +;; (ior (not (op1)) (not (op2))) is the canonical form of NAND. +(define_insn "*nand_vis" + [(set (match_operand:VL 0 "register_operand" "=") + (ior:VL (not:VL (match_operand:VL 1 "register_operand" "")) + (not:VL (match_operand:VL 2 "register_operand" ""))))] + "TARGET_VIS" + "fnand\t%1, %2, %0" + [(set_attr "type" "visl") + (set_attr "fptype" "")]) + +(define_code_iterator vlnotop [ior and]) + +(define_insn "*_not1_vis" + [(set (match_operand:VL 0 "register_operand" "=") + (vlnotop:VL (not:VL (match_operand:VL 1 "register_operand" "")) + (match_operand:VL 2 "register_operand" "")))] + "TARGET_VIS" + "fnot1\t%1, %2, %0" + [(set_attr "type" "visl") + (set_attr "fptype" "")]) + +(define_insn "*_not2_vis" + [(set (match_operand:VL 0 "register_operand" "=") + (vlnotop:VL (match_operand:VL 1 "register_operand" "") + (not:VL (match_operand:VL 2 "register_operand" ""))))] + "TARGET_VIS" + "fnot2\t%1, %2, %0" + [(set_attr "type" "visl") + (set_attr "fptype" "")]) + +(define_insn "one_cmpl2" + [(set (match_operand:VL 0 "register_operand" "=") + (not:VL (match_operand:VL 1 "register_operand" "")))] + "TARGET_VIS" + "fnot1\t%1, %0" + [(set_attr "type" "visl") + (set_attr "fptype" "")]) + +;; Hard to generate VIS instructions. We have builtins for these. + +(define_insn "fpack16_vis" + [(set (match_operand:V4QI 0 "register_operand" "=f") + (unspec:V4QI [(match_operand:V4HI 1 "register_operand" "e") + (reg:DI GSR_REG)] + UNSPEC_FPACK16))] + "TARGET_VIS" + "fpack16\t%1, %0" + [(set_attr "type" "fgm_pack") + (set_attr "fptype" "double")]) + +(define_insn "fpackfix_vis" + [(set (match_operand:V2HI 0 "register_operand" "=f") + (unspec:V2HI [(match_operand:V2SI 1 "register_operand" "e") + (reg:DI GSR_REG)] + UNSPEC_FPACKFIX))] + "TARGET_VIS" + "fpackfix\t%1, %0" + [(set_attr "type" "fgm_pack") + (set_attr "fptype" "double")]) + +(define_insn "fpack32_vis" + [(set (match_operand:V8QI 0 "register_operand" "=e") + (unspec:V8QI [(match_operand:V2SI 1 "register_operand" "e") + (match_operand:V8QI 2 "register_operand" "e") + (reg:DI GSR_REG)] + UNSPEC_FPACK32))] + "TARGET_VIS" + "fpack32\t%1, %2, %0" + [(set_attr "type" "fgm_pack") + (set_attr "fptype" "double")]) + +(define_insn "fexpand_vis" + [(set (match_operand:V4HI 0 "register_operand" "=e") + (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f")] + UNSPEC_FEXPAND))] + "TARGET_VIS" + "fexpand\t%1, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "fpu") + (set_attr "fptype" "double")]) + +(define_insn "fpmerge_vis" + [(set (match_operand:V8QI 0 "register_operand" "=e") + (vec_select:V8QI + (vec_concat:V8QI (match_operand:V4QI 1 "register_operand" "f") + (match_operand:V4QI 2 "register_operand" "f")) + (parallel [(const_int 0) (const_int 4) + (const_int 1) (const_int 5) + (const_int 2) (const_int 6) + (const_int 3) (const_int 7)])))] + "TARGET_VIS" + "fpmerge\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "fpu") + (set_attr "fptype" "double")]) + +;; Partitioned multiply instructions +(define_insn "fmul8x16_vis" + [(set (match_operand:V4HI 0 "register_operand" "=e") + (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f") + (match_operand:V4HI 2 "register_operand" "e")] + UNSPEC_MUL8))] + "TARGET_VIS" + "fmul8x16\t%1, %2, %0" + [(set_attr "type" "fgm_mul") + (set_attr "fptype" "double")]) + +(define_insn "fmul8x16au_vis" + [(set (match_operand:V4HI 0 "register_operand" "=e") + (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f") + (match_operand:V2HI 2 "register_operand" "f")] + UNSPEC_MUL16AU))] + "TARGET_VIS" + "fmul8x16au\t%1, %2, %0" + [(set_attr "type" "fgm_mul") + (set_attr "fptype" "double")]) + +(define_insn "fmul8x16al_vis" + [(set (match_operand:V4HI 0 "register_operand" "=e") + (unspec:V4HI [(match_operand:V4QI 1 "register_operand" "f") + (match_operand:V2HI 2 "register_operand" "f")] + UNSPEC_MUL16AL))] + "TARGET_VIS" + "fmul8x16al\t%1, %2, %0" + [(set_attr "type" "fgm_mul") + (set_attr "fptype" "double")]) + +(define_insn "fmul8sux16_vis" + [(set (match_operand:V4HI 0 "register_operand" "=e") + (unspec:V4HI [(match_operand:V8QI 1 "register_operand" "e") + (match_operand:V4HI 2 "register_operand" "e")] + UNSPEC_MUL8SU))] + "TARGET_VIS" + "fmul8sux16\t%1, %2, %0" + [(set_attr "type" "fgm_mul") + (set_attr "fptype" "double")]) + +(define_insn "fmul8ulx16_vis" + [(set (match_operand:V4HI 0 "register_operand" "=e") + (unspec:V4HI [(match_operand:V8QI 1 "register_operand" "e") + (match_operand:V4HI 2 "register_operand" "e")] + UNSPEC_MUL8UL))] + "TARGET_VIS" + "fmul8ulx16\t%1, %2, %0" + [(set_attr "type" "fgm_mul") + (set_attr "fptype" "double")]) + +(define_insn "fmuld8sux16_vis" + [(set (match_operand:V2SI 0 "register_operand" "=e") + (unspec:V2SI [(match_operand:V4QI 1 "register_operand" "f") + (match_operand:V2HI 2 "register_operand" "f")] + UNSPEC_MULDSU))] + "TARGET_VIS" + "fmuld8sux16\t%1, %2, %0" + [(set_attr "type" "fgm_mul") + (set_attr "fptype" "double")]) + +(define_insn "fmuld8ulx16_vis" + [(set (match_operand:V2SI 0 "register_operand" "=e") + (unspec:V2SI [(match_operand:V4QI 1 "register_operand" "f") + (match_operand:V2HI 2 "register_operand" "f")] + UNSPEC_MULDUL))] + "TARGET_VIS" + "fmuld8ulx16\t%1, %2, %0" + [(set_attr "type" "fgm_mul") + (set_attr "fptype" "double")]) + +(define_expand "wrgsr_vis" + [(set (reg:DI GSR_REG) (match_operand:DI 0 "arith_operand" ""))] + "TARGET_VIS" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_wrgsr_v8plus (operands[0])); + DONE; + } +}) + +(define_insn "*wrgsr_sp64" + [(set (reg:DI GSR_REG) (match_operand:DI 0 "arith_operand" "rI"))] + "TARGET_VIS && TARGET_ARCH64" + "wr\t%%g0, %0, %%gsr" + [(set_attr "type" "gsr") + (set_attr "subtype" "reg")]) + +(define_insn "wrgsr_v8plus" + [(set (reg:DI GSR_REG) (match_operand:DI 0 "arith_operand" "I,r")) + (clobber (match_scratch:SI 1 "=X,&h"))] + "TARGET_VIS && TARGET_ARCH32" +{ + if (GET_CODE (operands[0]) == CONST_INT + || sparc_check_64 (operands[0], insn)) + return "wr\t%%g0, %0, %%gsr"; + + output_asm_insn("srl\t%L0, 0, %L0", operands); + return "sllx\t%H0, 32, %1\n\tor\t%L0, %1, %1\n\twr\t%%g0, %1, %%gsr"; +} + [(set_attr "type" "multi")]) + +(define_expand "rdgsr_vis" + [(set (match_operand:DI 0 "register_operand" "") (reg:DI GSR_REG))] + "TARGET_VIS" +{ + if (TARGET_ARCH32) + { + emit_insn (gen_rdgsr_v8plus (operands[0])); + DONE; + } +}) + +(define_insn "*rdgsr_sp64" + [(set (match_operand:DI 0 "register_operand" "=r") (reg:DI GSR_REG))] + "TARGET_VIS && TARGET_ARCH64" + "rd\t%%gsr, %0" + [(set_attr "type" "gsr") + (set_attr "subtype" "reg")]) + +(define_insn "rdgsr_v8plus" + [(set (match_operand:DI 0 "register_operand" "=r") (reg:DI GSR_REG)) + (clobber (match_scratch:SI 1 "=&h"))] + "TARGET_VIS && TARGET_ARCH32" +{ + return "rd\t%%gsr, %1\n\tsrlx\t%1, 32, %H0\n\tmov %1, %L0"; +} + [(set_attr "type" "multi")]) + +;; Using faligndata only makes sense after an alignaddr since the choice of +;; bytes to take out of each operand is dependent on the results of the last +;; alignaddr. +(define_insn "faligndata_vis" + [(set (match_operand:VM64 0 "register_operand" "=e") + (unspec:VM64 [(match_operand:VM64 1 "register_operand" "e") + (match_operand:VM64 2 "register_operand" "e") + (reg:DI GSR_REG)] + UNSPEC_ALIGNDATA))] + "TARGET_VIS" + "faligndata\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "other") + (set_attr "fptype" "double")]) + +(define_insn "alignaddrsi_vis" + [(set (match_operand:SI 0 "register_operand" "=r") + (plus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") + (match_operand:SI 2 "register_or_zero_operand" "rJ"))) + (set (zero_extract:DI (reg:DI GSR_REG) (const_int 3) (const_int 0)) + (zero_extend:DI (plus:SI (match_dup 1) (match_dup 2))))] + "TARGET_VIS" + "alignaddr\t%r1, %r2, %0" + [(set_attr "type" "gsr") + (set_attr "subtype" "alignaddr")]) + +(define_insn "alignaddrdi_vis" + [(set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") + (match_operand:DI 2 "register_or_zero_operand" "rJ"))) + (set (zero_extract:DI (reg:DI GSR_REG) (const_int 3) (const_int 0)) + (plus:DI (match_dup 1) (match_dup 2)))] + "TARGET_VIS" + "alignaddr\t%r1, %r2, %0" + [(set_attr "type" "gsr") + (set_attr "subtype" "alignaddr")]) + +(define_insn "alignaddrlsi_vis" + [(set (match_operand:SI 0 "register_operand" "=r") + (plus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") + (match_operand:SI 2 "register_or_zero_operand" "rJ"))) + (set (zero_extract:DI (reg:DI GSR_REG) (const_int 3) (const_int 0)) + (xor:DI (zero_extend:DI (plus:SI (match_dup 1) (match_dup 2))) + (const_int 7)))] + "TARGET_VIS" + "alignaddrl\t%r1, %r2, %0" + [(set_attr "type" "gsr") + (set_attr "subtype" "alignaddr")]) + +(define_insn "alignaddrldi_vis" + [(set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") + (match_operand:DI 2 "register_or_zero_operand" "rJ"))) + (set (zero_extract:DI (reg:DI GSR_REG) (const_int 3) (const_int 0)) + (xor:DI (plus:DI (match_dup 1) (match_dup 2)) + (const_int 7)))] + "TARGET_VIS" + "alignaddrl\t%r1, %r2, %0" + [(set_attr "type" "gsr") + (set_attr "subtype" "alignaddr")]) + +(define_insn "pdist_vis" + [(set (match_operand:DI 0 "register_operand" "=e") + (unspec:DI [(match_operand:V8QI 1 "register_operand" "e") + (match_operand:V8QI 2 "register_operand" "e") + (match_operand:DI 3 "register_operand" "0")] + UNSPEC_PDIST))] + "TARGET_VIS" + "pdist\t%1, %2, %0" + [(set_attr "type" "pdist") + (set_attr "fptype" "double")]) + +;; Edge instructions produce condition codes equivalent to a 'subcc' +;; with the same operands. +(define_insn "edge8_vis" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")) + (const_int 0))) + (set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE8))] + "TARGET_VIS" + "edge8\t%r1, %r2, %0" + [(set_attr "type" "edge")]) + +(define_insn "edge8l_vis" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")) + (const_int 0))) + (set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE8L))] + "TARGET_VIS" + "edge8l\t%r1, %r2, %0" + [(set_attr "type" "edge")]) + +(define_insn "edge16_vis" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")) + (const_int 0))) + (set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE16))] + "TARGET_VIS" + "edge16\t%r1, %r2, %0" + [(set_attr "type" "edge")]) + +(define_insn "edge16l_vis" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")) + (const_int 0))) + (set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE16L))] + "TARGET_VIS" + "edge16l\t%r1, %r2, %0" + [(set_attr "type" "edge")]) + +(define_insn "edge32_vis" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")) + (const_int 0))) + (set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE32))] + "TARGET_VIS" + "edge32\t%r1, %r2, %0" + [(set_attr "type" "edge")]) + +(define_insn "edge32l_vis" + [(set (reg:CCNZ CC_REG) + (compare:CCNZ (minus:P (match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")) + (const_int 0))) + (set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_dup 1) (match_dup 2)] UNSPEC_EDGE32L))] + "TARGET_VIS" + "edge32l\t%r1, %r2, %0" + [(set_attr "type" "edge")]) + +(define_code_iterator gcond [le ne gt eq]) +(define_mode_iterator GCM [V4HI V2SI]) +(define_mode_attr gcm_name [(V4HI "16") (V2SI "32")]) + +(define_insn "fcmp_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(gcond:GCM (match_operand:GCM 1 "register_operand" "e") + (match_operand:GCM 2 "register_operand" "e"))] + UNSPEC_FCMP))] + "TARGET_VIS" + "fcmp\t%1, %2, %0" + [(set_attr "type" "viscmp")]) + +(define_insn "fpcmp8_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(gcond:V8QI (match_operand:V8QI 1 "register_operand" "e") + (match_operand:V8QI 2 "register_operand" "e"))] + UNSPEC_FCMP))] + "TARGET_VIS4" + "fpcmp8\t%1, %2, %0" + [(set_attr "type" "viscmp")]) + +(define_expand "vcond" + [(match_operand:GCM 0 "register_operand" "") + (match_operand:GCM 1 "register_operand" "") + (match_operand:GCM 2 "register_operand" "") + (match_operator 3 "" + [(match_operand:GCM 4 "register_operand" "") + (match_operand:GCM 5 "register_operand" "")])] + "TARGET_VIS3" +{ + sparc_expand_vcond (mode, operands, UNSPEC_CMASK, UNSPEC_FCMP); + DONE; +}) + +(define_expand "vconduv8qiv8qi" + [(match_operand:V8QI 0 "register_operand" "") + (match_operand:V8QI 1 "register_operand" "") + (match_operand:V8QI 2 "register_operand" "") + (match_operator 3 "" + [(match_operand:V8QI 4 "register_operand" "") + (match_operand:V8QI 5 "register_operand" "")])] + "TARGET_VIS3" +{ + sparc_expand_vcond (V8QImode, operands, UNSPEC_CMASK8, UNSPEC_FUCMP); + DONE; +}) + +(define_insn "array8_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_ARRAY8))] + "TARGET_VIS" + "array8\t%r1, %r2, %0" + [(set_attr "type" "array")]) + +(define_insn "array16_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_ARRAY16))] + "TARGET_VIS" + "array16\t%r1, %r2, %0" + [(set_attr "type" "array")]) + +(define_insn "array32_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_ARRAY32))] + "TARGET_VIS" + "array32\t%r1, %r2, %0" + [(set_attr "type" "array")]) + +(define_insn "bmaskdi_vis" + [(set (match_operand:DI 0 "register_operand" "=r") + (plus:DI (match_operand:DI 1 "register_or_zero_operand" "rJ") + (match_operand:DI 2 "register_or_zero_operand" "rJ"))) + (set (zero_extract:DI (reg:DI GSR_REG) (const_int 32) (const_int 32)) + (plus:DI (match_dup 1) (match_dup 2)))] + "TARGET_VIS2 && TARGET_ARCH64" + "bmask\t%r1, %r2, %0" + [(set_attr "type" "bmask")]) + +(define_insn "bmasksi_vis" + [(set (match_operand:SI 0 "register_operand" "=r") + (plus:SI (match_operand:SI 1 "register_or_zero_operand" "rJ") + (match_operand:SI 2 "register_or_zero_operand" "rJ"))) + (set (zero_extract:DI (reg:DI GSR_REG) (const_int 32) (const_int 32)) + (zero_extend:DI (plus:SI (match_dup 1) (match_dup 2))))] + "TARGET_VIS2" + "bmask\t%r1, %r2, %0" + [(set_attr "type" "bmask")]) + +(define_insn "bshuffle_vis" + [(set (match_operand:VM64 0 "register_operand" "=e") + (unspec:VM64 [(match_operand:VM64 1 "register_operand" "e") + (match_operand:VM64 2 "register_operand" "e") + (reg:DI GSR_REG)] + UNSPEC_BSHUFFLE))] + "TARGET_VIS2" + "bshuffle\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "other") + (set_attr "fptype" "double")]) + +;; Unlike constant permutation, we can vastly simplify the compression of +;; the 64-bit selector input to the 32-bit %gsr value by knowing what the +;; width of the input is. +(define_expand "vec_perm" + [(match_operand:VM64 0 "register_operand" "") + (match_operand:VM64 1 "register_operand" "") + (match_operand:VM64 2 "register_operand" "") + (match_operand:VM64 3 "register_operand" "")] + "TARGET_VIS2" +{ + sparc_expand_vec_perm_bmask (mode, operands[3]); + emit_insn (gen_bshuffle_vis (operands[0], operands[1], operands[2])); + DONE; +}) + +;; VIS 2.0 adds edge variants which do not set the condition codes +(define_insn "edge8n_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_EDGE8N))] + "TARGET_VIS2" + "edge8n\t%r1, %r2, %0" + [(set_attr "type" "edgen")]) + +(define_insn "edge8ln_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_EDGE8LN))] + "TARGET_VIS2" + "edge8ln\t%r1, %r2, %0" + [(set_attr "type" "edgen")]) + +(define_insn "edge16n_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_EDGE16N))] + "TARGET_VIS2" + "edge16n\t%r1, %r2, %0" + [(set_attr "type" "edgen")]) + +(define_insn "edge16ln_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_EDGE16LN))] + "TARGET_VIS2" + "edge16ln\t%r1, %r2, %0" + [(set_attr "type" "edgen")]) + +(define_insn "edge32n_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_EDGE32N))] + "TARGET_VIS2" + "edge32n\t%r1, %r2, %0" + [(set_attr "type" "edgen")]) + +(define_insn "edge32ln_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:P 1 "register_or_zero_operand" "rJ") + (match_operand:P 2 "register_or_zero_operand" "rJ")] + UNSPEC_EDGE32LN))] + "TARGET_VIS2" + "edge32ln\t%r1, %r2, %0" + [(set_attr "type" "edge")]) + +;; Conditional moves are possible via fcmpX --> cmaskX -> bshuffle +(define_insn "cmask8_vis" + [(set (reg:DI GSR_REG) + (unspec:DI [(match_operand:P 0 "register_or_zero_operand" "rJ") + (reg:DI GSR_REG)] + UNSPEC_CMASK8))] + "TARGET_VIS3" + "cmask8\t%r0" + [(set_attr "type" "fga") + (set_attr "subtype" "cmask")]) + +(define_insn "cmask16_vis" + [(set (reg:DI GSR_REG) + (unspec:DI [(match_operand:P 0 "register_or_zero_operand" "rJ") + (reg:DI GSR_REG)] + UNSPEC_CMASK16))] + "TARGET_VIS3" + "cmask16\t%r0" + [(set_attr "type" "fga") + (set_attr "subtype" "cmask")]) + +(define_insn "cmask32_vis" + [(set (reg:DI GSR_REG) + (unspec:DI [(match_operand:P 0 "register_or_zero_operand" "rJ") + (reg:DI GSR_REG)] + UNSPEC_CMASK32))] + "TARGET_VIS3" + "cmask32\t%r0" + [(set_attr "type" "fga") + (set_attr "subtype" "cmask")]) + +(define_insn "fchksm16_vis" + [(set (match_operand:V4HI 0 "register_operand" "=e") + (unspec:V4HI [(match_operand:V4HI 1 "register_operand" "e") + (match_operand:V4HI 2 "register_operand" "e")] + UNSPEC_FCHKSM16))] + "TARGET_VIS3" + "fchksm16\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "fpu")]) + +(define_code_iterator vis3_shift [ashift ss_ashift lshiftrt ashiftrt]) +(define_code_attr vis3_shift_insn + [(ashift "fsll") (ss_ashift "fslas") (lshiftrt "fsrl") (ashiftrt "fsra")]) +(define_code_attr vis3_shift_patname + [(ashift "ashl") (ss_ashift "ssashl") (lshiftrt "lshr") (ashiftrt "ashr")]) + +(define_insn "v3" + [(set (match_operand:GCM 0 "register_operand" "=") + (vis3_shift:GCM (match_operand:GCM 1 "register_operand" "") + (match_operand:GCM 2 "register_operand" "")))] + "TARGET_VIS3" + "\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "fpu")]) + +(define_insn "pdistn_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:V8QI 1 "register_operand" "e") + (match_operand:V8QI 2 "register_operand" "e")] + UNSPEC_PDISTN))] + "TARGET_VIS3" + "pdistn\t%1, %2, %0" + [(set_attr "type" "pdistn") + (set_attr "fptype" "double")]) + +(define_insn "fmean16_vis" + [(set (match_operand:V4HI 0 "register_operand" "=e") + (truncate:V4HI + (lshiftrt:V4SI + (plus:V4SI + (plus:V4SI + (zero_extend:V4SI + (match_operand:V4HI 1 "register_operand" "e")) + (zero_extend:V4SI + (match_operand:V4HI 2 "register_operand" "e"))) + (const_vector:V4SI [(const_int 1) (const_int 1) + (const_int 1) (const_int 1)])) + (const_int 1))))] + "TARGET_VIS3" + "fmean16\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "fpu")]) + +(define_insn "fp64_vis" + [(set (match_operand:V1DI 0 "register_operand" "=e") + (plusminus:V1DI (match_operand:V1DI 1 "register_operand" "e") + (match_operand:V1DI 2 "register_operand" "e")))] + "TARGET_VIS3" + "fp64\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "addsub64")]) + +(define_insn "v8qi3" + [(set (match_operand:V8QI 0 "register_operand" "=e") + (plusminus:V8QI (match_operand:V8QI 1 "register_operand" "e") + (match_operand:V8QI 2 "register_operand" "e")))] + "TARGET_VIS4" + "fp8\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "other")]) + +(define_mode_iterator VASS [V4HI V2SI V2HI V1SI]) +(define_code_iterator vis3_addsub_ss [ss_plus ss_minus]) +(define_code_attr vis3_addsub_ss_insn + [(ss_plus "fpadds") (ss_minus "fpsubs")]) +(define_code_attr vis3_addsub_ss_patname + [(ss_plus "ssadd") (ss_minus "sssub")]) + +(define_insn "3" + [(set (match_operand:VASS 0 "register_operand" "=") + (vis3_addsub_ss:VASS (match_operand:VASS 1 "register_operand" "") + (match_operand:VASS 2 "register_operand" "")))] + "TARGET_VIS3" + "\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "other")]) + +(define_mode_iterator VMMAX [V8QI V4HI V2SI]) +(define_code_iterator vis4_minmax [smin smax]) +(define_code_attr vis4_minmax_insn + [(smin "fpmin") (smax "fpmax")]) +(define_code_attr vis4_minmax_patname + [(smin "min") (smax "max")]) + +(define_insn "3" + [(set (match_operand:VMMAX 0 "register_operand" "=") + (vis4_minmax:VMMAX (match_operand:VMMAX 1 "register_operand" "") + (match_operand:VMMAX 2 "register_operand" "")))] + "TARGET_VIS4" + "\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "maxmin")]) + +(define_code_iterator vis4_uminmax [umin umax]) +(define_code_attr vis4_uminmax_insn + [(umin "fpminu") (umax "fpmaxu")]) +(define_code_attr vis4_uminmax_patname + [(umin "minu") (umax "maxu")]) + +(define_insn "3" + [(set (match_operand:VMMAX 0 "register_operand" "=") + (vis4_uminmax:VMMAX (match_operand:VMMAX 1 "register_operand" "") + (match_operand:VMMAX 2 "register_operand" "")))] + "TARGET_VIS4" + "\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "maxmin")]) + +;; The use of vis3_addsub_ss_patname in the VIS4 instruction below is +;; intended. +(define_insn "v8qi3" + [(set (match_operand:V8QI 0 "register_operand" "=e") + (vis3_addsub_ss:V8QI (match_operand:V8QI 1 "register_operand" "e") + (match_operand:V8QI 2 "register_operand" "e")))] + "TARGET_VIS4" + "8\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "other")]) + +(define_mode_iterator VAUS [V4HI V8QI]) +(define_code_iterator vis4_addsub_us [us_plus us_minus]) +(define_code_attr vis4_addsub_us_insn + [(us_plus "fpaddus") (us_minus "fpsubus")]) +(define_code_attr vis4_addsub_us_patname + [(us_plus "usadd") (us_minus "ussub")]) + +(define_insn "3" + [(set (match_operand:VAUS 0 "register_operand" "=") + (vis4_addsub_us:VAUS (match_operand:VAUS 1 "register_operand" "") + (match_operand:VAUS 2 "register_operand" "")))] + "TARGET_VIS4" + "\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "other")]) + +(define_insn "fucmp8_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(gcond:V8QI (match_operand:V8QI 1 "register_operand" "e") + (match_operand:V8QI 2 "register_operand" "e"))] + UNSPEC_FUCMP))] + "TARGET_VIS3" + "fucmp8\t%1, %2, %0" + [(set_attr "type" "viscmp")]) + +(define_insn "fpcmpu_vis" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(gcond:GCM (match_operand:GCM 1 "register_operand" "e") + (match_operand:GCM 2 "register_operand" "e"))] + UNSPEC_FUCMP))] + "TARGET_VIS4" + "fpcmpu\t%1, %2, %0" + [(set_attr "type" "viscmp")]) + +(define_insn "*naddsf3" + [(set (match_operand:SF 0 "register_operand" "=f") + (neg:SF (plus:SF (match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f"))))] + "TARGET_VIS3" + "fnadds\t%1, %2, %0" + [(set_attr "type" "fp")]) + +(define_insn "*nadddf3" + [(set (match_operand:DF 0 "register_operand" "=e") + (neg:DF (plus:DF (match_operand:DF 1 "register_operand" "e") + (match_operand:DF 2 "register_operand" "e"))))] + "TARGET_VIS3" + "fnaddd\t%1, %2, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_insn "*nmulsf3" + [(set (match_operand:SF 0 "register_operand" "=f") + (mult:SF (neg:SF (match_operand:SF 1 "register_operand" "f")) + (match_operand:SF 2 "register_operand" "f")))] + "TARGET_VIS3" + "fnmuls\t%1, %2, %0" + [(set_attr "type" "fpmul")]) + +(define_insn "*nmuldf3" + [(set (match_operand:DF 0 "register_operand" "=e") + (mult:DF (neg:DF (match_operand:DF 1 "register_operand" "e")) + (match_operand:DF 2 "register_operand" "e")))] + "TARGET_VIS3" + "fnmuld\t%1, %2, %0" + [(set_attr "type" "fpmul") + (set_attr "fptype" "double")]) + +(define_insn "*nmuldf3_extend" + [(set (match_operand:DF 0 "register_operand" "=e") + (mult:DF (neg:DF (float_extend:DF + (match_operand:SF 1 "register_operand" "f"))) + (float_extend:DF + (match_operand:SF 2 "register_operand" "f"))))] + "TARGET_VIS3" + "fnsmuld\t%1, %2, %0" + [(set_attr "type" "fpmul") + (set_attr "fptype" "double")]) + +(define_insn "fhaddsf_vis" + [(set (match_operand:SF 0 "register_operand" "=f") + (unspec:SF [(match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")] + UNSPEC_FHADD))] + "TARGET_VIS3" + "fhadds\t%1, %2, %0" + [(set_attr "type" "fp")]) + +(define_insn "fhadddf_vis" + [(set (match_operand:DF 0 "register_operand" "=f") + (unspec:DF [(match_operand:DF 1 "register_operand" "f") + (match_operand:DF 2 "register_operand" "f")] + UNSPEC_FHADD))] + "TARGET_VIS3" + "fhaddd\t%1, %2, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_insn "fhsubsf_vis" + [(set (match_operand:SF 0 "register_operand" "=f") + (unspec:SF [(match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")] + UNSPEC_FHSUB))] + "TARGET_VIS3" + "fhsubs\t%1, %2, %0" + [(set_attr "type" "fp")]) + +(define_insn "fhsubdf_vis" + [(set (match_operand:DF 0 "register_operand" "=f") + (unspec:DF [(match_operand:DF 1 "register_operand" "f") + (match_operand:DF 2 "register_operand" "f")] + UNSPEC_FHSUB))] + "TARGET_VIS3" + "fhsubd\t%1, %2, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +(define_insn "fnhaddsf_vis" + [(set (match_operand:SF 0 "register_operand" "=f") + (neg:SF (unspec:SF [(match_operand:SF 1 "register_operand" "f") + (match_operand:SF 2 "register_operand" "f")] + UNSPEC_FHADD)))] + "TARGET_VIS3" + "fnhadds\t%1, %2, %0" + [(set_attr "type" "fp")]) + +(define_insn "fnhadddf_vis" + [(set (match_operand:DF 0 "register_operand" "=f") + (neg:DF (unspec:DF [(match_operand:DF 1 "register_operand" "f") + (match_operand:DF 2 "register_operand" "f")] + UNSPEC_FHADD)))] + "TARGET_VIS3" + "fnhaddd\t%1, %2, %0" + [(set_attr "type" "fp") + (set_attr "fptype" "double")]) + +;; VIS4B instructions. + +(define_mode_iterator DUMODE [V2SI V4HI V8QI]) + +(define_insn "dictunpack" + [(set (match_operand:DUMODE 0 "register_operand" "=e") + (unspec:DUMODE [(match_operand:DF 1 "register_operand" "e") + (match_operand:SI 2 "imm5_operand_dictunpack" "t")] + UNSPEC_DICTUNPACK))] + "TARGET_VIS4B" + "dictunpack\t%1, %2, %0" + [(set_attr "type" "fga") + (set_attr "subtype" "other")]) + +(define_mode_iterator FPCSMODE [V2SI V4HI V8QI]) +(define_code_iterator fpcscond [le gt eq ne]) +(define_code_iterator fpcsucond [le gt]) + +(define_insn "fpcmpshl" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(fpcscond:FPCSMODE (match_operand:FPCSMODE 1 "register_operand" "e") + (match_operand:FPCSMODE 2 "register_operand" "e")) + (match_operand:SI 3 "imm2_operand" "q")] + UNSPEC_FPCMPSHL))] + "TARGET_VIS4B" + "fpcmpshl\t%1, %2, %3, %0" + [(set_attr "type" "viscmp")]) + +(define_insn "fpcmpushl" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(fpcsucond:FPCSMODE (match_operand:FPCSMODE 1 "register_operand" "e") + (match_operand:FPCSMODE 2 "register_operand" "e")) + (match_operand:SI 3 "imm2_operand" "q")] + UNSPEC_FPUCMPSHL))] + "TARGET_VIS4B" + "fpcmpushl\t%1, %2, %3, %0" + [(set_attr "type" "viscmp")]) + +(define_insn "fpcmpdeshl" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:FPCSMODE 1 "register_operand" "e") + (match_operand:FPCSMODE 2 "register_operand" "e") + (match_operand:SI 3 "imm2_operand" "q")] + UNSPEC_FPCMPDESHL))] + "TARGET_VIS4B" + "fpcmpdeshl\t%1, %2, %3, %0" + [(set_attr "type" "viscmp")]) + +(define_insn "fpcmpurshl" + [(set (match_operand:P 0 "register_operand" "=r") + (unspec:P [(match_operand:FPCSMODE 1 "register_operand" "e") + (match_operand:FPCSMODE 2 "register_operand" "e") + (match_operand:SI 3 "imm2_operand" "q")] + UNSPEC_FPCMPURSHL))] + "TARGET_VIS4B" + "fpcmpurshl\t%1, %2, %3, %0" + [(set_attr "type" "viscmp")]) + +(include "sync.md") diff -Nur gcc-10.3.0.orig/gcc/config/sparc/sparc-protos.h gcc-10.3.0/gcc/config/sparc/sparc-protos.h --- gcc-10.3.0.orig/gcc/config/sparc/sparc-protos.h 2021-04-08 13:56:28.201742273 +0200 +++ gcc-10.3.0/gcc/config/sparc/sparc-protos.h 2021-04-09 07:51:37.812496739 +0200 @@ -69,7 +69,6 @@ extern void sparc_split_mem_reg (rtx, rtx, machine_mode); extern int sparc_split_reg_reg_legitimate (rtx, rtx); extern void sparc_split_reg_reg (rtx, rtx, machine_mode); -extern const char *output_load_pcrel_sym (rtx *); extern const char *output_ubranch (rtx, rtx_insn *); extern const char *output_cbranch (rtx, rtx, int, int, int, rtx_insn *); extern const char *output_return (rtx_insn *); diff -Nur gcc-10.3.0.orig/gcc/testsuite/gcc.c-torture/compile/20191108-1.c gcc-10.3.0/gcc/testsuite/gcc.c-torture/compile/20191108-1.c --- gcc-10.3.0.orig/gcc/testsuite/gcc.c-torture/compile/20191108-1.c 2021-04-08 13:56:28.929751064 +0200 +++ gcc-10.3.0/gcc/testsuite/gcc.c-torture/compile/20191108-1.c 1970-01-01 01:00:00.000000000 +0100 @@ -1,14 +0,0 @@ -/* PR target/92095 */ -/* Testcase by Sergei Trofimovich */ - -typedef union { - double a; - int b[2]; -} c; - -double d(int e) -{ - c f; - (&f)->b[0] = 15728640; - return e ? -(&f)->a : (&f)->a; -} diff -Nur gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-3.c gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-3.c --- gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-3.c 2021-04-08 13:56:29.453757389 +0200 +++ gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-3.c 2021-04-09 07:51:37.988507907 +0200 @@ -1,6 +1,6 @@ /* { dg-do compile } */ /* { dg-require-effective-target lp64 } */ -/* { dg-options "-O -fno-pie" } */ +/* { dg-options "-O" } */ #include #include diff -Nur gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-4.c gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-4.c --- gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-4.c 2021-04-08 13:56:29.453757389 +0200 +++ gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-4.c 2021-04-09 07:51:37.988507907 +0200 @@ -1,6 +1,6 @@ /* { dg-do compile } */ /* { dg-require-effective-target lp64 } */ -/* { dg-options "-O -fno-pie -mno-vis3 -mno-vis4" } */ +/* { dg-options "-O -mno-vis3 -mno-vis4" } */ #include #include diff -Nur gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-5.c gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-5.c --- gcc-10.3.0.orig/gcc/testsuite/gcc.target/sparc/overflow-5.c 2021-04-08 13:56:29.453757389 +0200 +++ gcc-10.3.0/gcc/testsuite/gcc.target/sparc/overflow-5.c 2021-04-09 07:51:37.992508161 +0200 @@ -1,6 +1,6 @@ /* { dg-do compile } */ /* { dg-require-effective-target lp64 } */ -/* { dg-options "-O -fno-pie -mvis3" } */ +/* { dg-options "-O -mvis3" } */ #include #include