Age | Commit message (Collapse) | Author |
|
Even on Darwin there can be a GNU compatible sed binary in the
PATH. In this case we shouldn't use the BSD sed syntax.
If prereq.sh detects non GNU sed it will build a GNU sed and
therefore we can assume to have a GNU sed in the PATH.
|
|
- cmdline.txt is not required with full device tree capable kernel
- force 270x option for mkknlimg trailer
- we need ext4 filesystem support in the kernel other filesystems are
rarely used at the moment
- ATAGS and CMDLINE_FROM_BOOTLOADER not required with device tree capable kernel
- overlay dtb files are renamed to dtbo suffix
|
|
|
|
|
|
On newer hardware heirloom cpio triggers a segfault in memcpy
from glibc (ssse3 optimized version).
Just use default GNU cpio and provide it via host package.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
other font checks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ADK_VERBOSE=1 is used
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This works by using git as backend for all the dirty work. This means
that patches are not just applied, but committed separately on top of the
base sources (which are put into an initial commit). A final empty commit
marks the end of the applied patch series, which allows to have multiple
sets of patches to apply on top of each other. So a git history might
look like this:
- OpenADK patch marker: 0000
(this is the initial commit, containing the unpatched sources)
- patch 1 of series 1
- patch 2 of series 1
- patch 3 of series 1
- OpenADK patch marker: 0001
- patch 1 of series 2
- patch 2 of series 2
- OpenADK patch marker: 0002
In addition to the separating empty commits, for every patch series
metadata files are added (which are used for update-patches):
__patchfiles__: A list of the patches' file names
__patchdir__: The directory containing the applied patches
Since patches might have to be unzipped first and in order to allow
calling git-am just once for each patch series, the patches (along with
above metadata files) are cached in dedicated directories:
.git/patch_tmp/NNNN (where NNNN is the series number with leading zeroes
[so shell globbing returns them in the right order]).
In case update-patches is called later, update_patches.sh works it's way
reverse through the git history, searching for commits named 'OpenADK
patch marker: NNNN'. For each one it finds, it uses the metadata info to
first remove all source patch files, then export the history in between
using git-format-patch.
To change patches or add new ones, the user has to use git-rebase in
order to get things where they need to be for update_patches.sh to put
stuff at the right place. For an example, here is how to change patch 3
of series 1 in the sample history above:
- make desired code changes
- commit them, ideally using --fixup option
- call 'git rebase -i --autosquash <hash of OpenADK patch marker: 0000>'
Using --fixup and --autosquash is convenient, since it automatically
edits the rebase todo as intended. It's optional though, editing the todo
manually will do just fine as well.
Signed-off-by: Phil Sutter <phil@nwl.cc>
|
|
|
|
|
|
defaults are set right
|
|
|
|
|
|
After the addition of bare metal toolchains the menu system allowed
to create non-valid configurations. I reworked it so we can also
add other operating system support if we wish.
So first you choose your operating system, then your architecture
and endianess, after that your embedded system, emulator or
generic device and then you choose your task you want to run.
Tasks may be toolchain, a new appliance/application or some preconfigured
sets of packages and configurations as kodi, mpd, firefox and more.
The tasks are limited to a plausible choice of hardware and software.
Deduplicate CPU configuration.
You don't wanna compile Kodi for a H8/300 microcontroller ;)
|
|
|